میکروکایمریسم؛ مهاجرت دوسویه سلول‌ها بین مادر و جنین

نوع مقاله : مروری

نویسندگان

1 استادیار گروه زیست‌شناسی سلولی و مولکولی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران.

2 کارشناس ارشد زیست‌شناسی سلولی و مولکولی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران.

چکیده

مقدمه: گذر دوطرفه­ سلول­ ها بین جنین و مادر، احتمالاً در تمام بارداری­ها رخ داده و در توسعه­ سیستم ایمنی جنینی، ترمیم بافتی در بیماری­ های خودایمنی، سرطان و مراقبت ­ایمنی در مادر نقش دارد. شواهد پیش­رونده نشان می­ دهد که سلول­ های جنینی می ­توانند بعد از زایمان پایدار بمانند و به میکروکایمریسم منجر شوند. با وجود شواهد کافی مبنی بر گذر دوطرفه­ سلول­ ها، بخش قابل توجهی از میکروکایمریسم جنینی مبهم باقی مانده ­است. مطالعه­ مروری حاضر با هدف بررسی آخرین یافته ­ها در ارتباط با میکروکایمریسم جنینی و نقش­ های شناخته شده یا احتمالی این پدیده در بدن مادر و جنین انجام شد.
روشکار: در این مطالعه­ مروری جهت یافتن مقالات مرتبط، پایگا­های PubMed، Science Direct، Scopus و Google Scholar با استفاده از کلمات کلیدی میکروکایمریسم، گذر سلولی بین جنین و مادر (MFCT) و جنین نیمه­ آلوژنیک در بازه­ زمانی 1991 تا 2021 جستجو شده و مقالات مجلات چارک اول و مقالات دارای اطلاعات مستند در اولویت قرار گرفتند.
یافته ­ها: در طول بارداری موفق انسان، احتمالاً با سرکوب سیستم ایمنی جفتی، جنین نیمه­ آلوژنیک از حمله­ سیستم ایمنی مادر در امان می­ ماند و به ایجاد میکروکایمریسم کمک می­ کند. سلول­ های جنینی عمدتاً در مغز استخوان مادر پایدار می­ شوند و دارای توانایی تمایز به سلول­ های بالغ ویژه­ بافتی در اندام­ های آسیب­ دیده­ مادر هستند.
نتیجه­ گیری: سلول­ های میکروکایمریک در برخی پاسخ ­های ایمنی و بیماری­ های مرتبط با سیستم ایمنی نقش قابل توجهی دارند. همچنین، توانایی سلول­ های جنینی برای عبور از سد جفتی و سد خونی- مغزی، مهاجرت به بافت ­های گوناگون و تمایز به چندین نوع سلول مختلف، باعث پیش­برد استراتژی­ هایی برای پیوند داخل وریدی سلول­ های بنیادی یا اجدادی به‌منظور ترمیم با روش سلول­ درمانی شده است. از سویی، حضور سلول ­های جنینی در خون مادر می­ تواند ابزاری غیر­تهاجمی برای دسترسی به DNA جنینی، به‌منظور تشخیص پیش از تولد فراهم ­نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Microchimerism; Bilateral migration of cells between mother and fetus

نویسندگان [English]

  • Solmaz Moniri Javadhesari 1
  • Mohadeseh Koohichapan 2
1 Assistant professor, Department of Cellular and Molecular Biology, School of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
2 M.Sc. of Cellular and Molecular Biology, school of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
چکیده [English]

Introduction: The bilateral cell traffic between fetus and mother probably occurs in all pregnancies and is participated in the development of fetal immune system, tissue repair in autoimmune diseases, cancer and maternal immune surveillance. Progressive evidences indicate that after giving birth, embryonic cells persist and lead to microchimerism. Despite ample evidences of two-way cell traffic, a significant portion of embryonic microchimerism remains ambiguous. This review study was performed aimed to investigate the latest data about the microchimerism and its function in both mother and baby.
Methods: In this review, to find the related articles, databases of PubMed, Science Direct, Scopus, and Google Scholar were searched using the keywords of microchimerism, maternal-fetal cellular trafficking (MFCT) and semi-allogeneic fetus from 1991 to 2021. Q1 journals and articles with documented information were prioritized.
Results: During a successful human pregnancy, the semi-allogeneic fetus is protected from the attack of the maternal immune system possibly by suppressing the placental immune response, which contributes to microchimerism. Embryonic cells mainly are stabilized in the maternal bone marrow and are able to differentiate into tissue-specific adult cells in damaged organs of mother
Conclusion: Microchimeric cells are significantly involved in some immune responses and diseases related to the immune system. Also, the ability of embryonic cells to cross the placental barrier and the blood-brain barrier, migrate to various tissues and differentiate into several types of cells, have developed the strategies for cell therapy by intravenous transplantation of stem or ancestral cells. Also, the nucleated embryonic cells circulated in the mother's blood can provide fetal DNA for noninvasive prenatal diagnosis.

کلیدواژه‌ها [English]

  • Maternal-fetal cellular trafficking (MFCT)
  • Microchimerism
  • Semi-allogeneic fetus
  1. Dawe GS, Tan XW, Xiao ZC. Cell migration from baby to mother. Cell Adhesion & Migration 2007; 1(1):19-27.
  2. Boddy AM, Fortunato A, Wilson Sayres M, Aktipis A. Fetal microchimerism and maternal health: a review and evolutionary analysis of cooperation and conflict beyond the womb. BioEssays 2015; 37(10):1106-18.
  3. Moser G, Guettler J, Forstner D, Gauster M. Maternal platelets—Friend or foe of the human placenta?. International journal of molecular sciences 2019; 20(22):5639.
  4. O'Donoghue K. Fetal microchimerism and maternal health during and after pregnancy. Obstetric medicine 2008; 1(2):56-64.
  5. Sunami R, Komuro M, Tagaya H, Hirata S. Migration of microchimeric fetal cells into maternal circulation before placenta formation. Chimerism 2010; 1(2):66-8.
  6. Bianchi DW. Fetal cells in the mother: from genetic diagnosis to diseases associated with fetal cell microchimerism. European Journal of Obstetrics & Gynecology and Reproductive Biology 2000; 92(1):103-8.
  7. Kara RJ, Bolli P, Karakikes I, Matsunaga I, Tripodi J, Tanweer O, et al. Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circulation research 2012; 110(1):82-93.
  8. Klonisch T, Drouin R. Fetal–maternal exchange of multipotent stem/progenitor cells: microchimerism in diagnosis and disease. Trends in molecular medicine 2009; 15(11):510-8.
  9. Demirbek B, Demirhan O. Microchimerism may be the cause of psychiatric disorders; 2019.
  10. Tanaka A, Lindor K, Ansari A, Gershwin ME. Fetal microchimerisms in the mother: immunologic implications. Liver Transplantation 2000; 6(2):138-43.
  11. Nunobiki O, Ueda M, Toji E, Yamamoto M, Akashi K, Sato N, et al. Genetic polymorphism of cancer susceptibility genes and HPV infection in cervical carcinogenesis. Pathology Research International 2011; 2011.
  12. Lipták N, Hoffmann OI, Kerekes A, Iski G, Ernszt D, Kvell K, et al. Monitoring of Venus transgenic cell migration during pregnancy in non-transgenic rabbits. Transgenic research 2017; 26(2):291-9.
  13. Jeanty C, Derderian SC, MacKenzie TC. Maternal-fetal cellular trafficking: clinical implications and consequences. Current opinion in pediatrics 2014;26(3):377.
  14. Rendell V, Bath NM, Brennan TV. Medawar’s paradox and immune mechanisms of fetomaternal tolerance. OBM transplantation 2020; 4(1).
  15. Lo YD, Wainscoat JS, Gillmer MD, Patel P, Sampietro M, Fleming KA. Prenatal sex determination by DNA amplification from maternal peripheral blood. The Lancet 1989; 334(8676):1363-5.
  16. Al-Husaini AM. Role of placenta in the vertical transmission of human immunodeficiency virus. Journal of Perinatology 2009; 29(5):331-6.
  17. Gadi VK. Fetal microchimerism and cancer. Cancer Letters 2009; 276(1):8-13.
  18. Trowsdale J, Betz AG. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nature immunology 2006; 7(3):241-6.
  19. Medawar PB, Hunt R. Vulnerability of methylcholanthrene-induced tumours to immunity aroused by syngeneic foetal cells. Nature 1978; 271(5641):164-5.
  20. Baban B, Chandler P, McCool D, Marshall B, Munn DH, Mellor AL. Indoleamine 2, 3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. Journal of reproductive immunology 2004; 61(2):67-77.
  21. Medawar PB. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. InSymp Soc Exp Biol 1953; 7:320-338.
  22. Zenclussen AC. Adaptive immune responses during pregnancy. American Journal of Reproductive Immunology 2013; 69(4):291-303.
  23. Kamimura S, Eguchi K, Yonezawa M, Sekiba K. Localization and developmental change of indoleamine 2, 3-dioxygenase activity in the human placenta. Acta Medica Okayama 1991; 45(3):135-9.
  24. Cheng SB, Davis S, Sharma S. Maternal‐fetal cross talk through cell‐free fetal DNA, telomere shortening, microchimerism, and inflammation. American Journal of Reproductive Immunology. 2018;79(5):e12851.
  25. Ashkar AA, Black GP, Wei Q, He H, Liang L, Head JR, et al. Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. The Journal of Immunology 2003; 171(6):2937-44.
  26. von Rango U. Fetal tolerance in human pregnancy—a crucial balance between acceptance and limitation of trophoblast invasion. Immunology letters 2008; 115(1):21-32.
  27. Abediankenari S, Farzad F, Rahmani Z, Hashemi-Soteh MB. HLA-G5 and G7 isoforms in pregnant women. Iranian Journal of Allergy, Asthma and Immunology 2015: 217-21.
  28. Huddleston H, Schust DJ. Immune interactions at the maternal–fetal interface: a focus on antigen presentation. American Journal of Reproductive Immunology 2004; 51(4):283-9.
  29. Vacchio MS, Hodes RJ. Fetal expression of Fas ligand is necessary and sufficient for induction of CD8 T cell tolerance to the fetal antigen HY during pregnancy. The Journal of Immunology 2005; 174(8):4657-61.
  30. Kuntz TB, Christensen RD, Stegner J, Duff P, Koenig JM. Fas and Fas ligand expression in maternal blood and in umbilical cord blood in preeclampsia. Pediatric research 2001; 50(6):743-9.
  31. Nelson JL, Furst DE, Maloney S, Gooley T, Evans PC, Smith A, Bean MA, Ober C, Bianchi DW. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. The Lancet 1998; 351(9102):559-62.
  32. Artlett CM, Smith JB, Jimenez SA. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. New England Journal of Medicine 1998; 338(17):1186-91.
  33. Chan WF, Gurnot C, Montine TJ, Sonnen JA, Guthrie KA, Nelson JL. Male microchimerism in the human female brain. PLoS One 2012; 7(9):e45592.
  34. Zeng XX, Tan KH, Yeo A, Sasajala P, Tan X, Xiao ZC, et al. Pregnancy-associated progenitor cells differentiate and mature into neurons in the maternal brain. Stem cells and development 2010; 19(12):1819-30.
  35. Bayes-Genis A, Bellosillo B, de La Calle O, Salido M, Roura S, Ristol FS, et al. Identification of male cardiomyocytes of extracardiac origin in the hearts of women with male progeny: male fetal cell microchimerism of the heart. The Journal of heart and lung transplantation 2005; 24(12):2179-83.
  36. Gadi VK, Malone KE, Guthrie KA, Porter PL, Nelson JL. Case-control study of fetal microchimerism and breast cancer. PLoS One 2008; 3(3):e1706.
  37. Gadi VK, Nelson JL. Fetal microchimerism in women with breast cancer. Cancer research 2007; 67(19):9035-8.
  38. Kamper-Jørgensen M, Biggar RJ, Tjønneland A, Hjalgrim H, Kroman N, Rostgaard K, et al. Opposite effects of microchimerism on breast and colon cancer. European journal of cancer 2012; 48(14):2227-35.
  39. Eun JK, Guthrie KA, Zirpoli G, Gadi VK. In situ breast cancer and microchimerism. Scientific reports 2013; 3(1):1-5.
  40. Dhimolea E, Denes V, Lakk M, Al‐Bazzaz S, Aziz‐Zaman S, Pilichowska M, et al. High male chimerism in the female breast shows quantitative links with cancer. International journal of cancer 2013; 133(4):835-42.
  41. Dubernard G, Aractingi S, Oster M, Rouzier R, Mathieu MC, Uzan S, Khosrotehrani K. Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Research 2008; 10(1):1-8.
  42. Dubernard G, Oster M, Chareyre F, Antoine M, Rouzier R, Uzan S, et al. Increased fetal cell microchimerism in high grade breast carcinomas occurring during pregnancy. International Journal of Cancer 2009; 124(5):1054-9.
  43. Cirello V, Recalcati MP, Muzza M, Rossi S, Perrino M, Vicentini L, et al. Fetal cell microchimerism in papillary thyroid cancer: a possible role in tumor damage and tissue repair. Cancer Research 2008; 68(20):8482-8.
  44. Srivatsa B, Srivatsa S, Johnson KL, Samura O, Lee SL, Bianchi DW. Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. The Lancet 2001; 358(9298):2034-8.
  45. Klintschar M, Immel UD, Kehlen A, Schwaiger P, Mustafa T, Mannweiler S, et al. Fetal microchimerism in Hashimoto’s thyroiditis: a quantitative approach. European Journal of Endocrinology 2006; 154(2):237-41.
  46. Lepez T, Vandewoestyne M, Hussain S, Van Nieuwerburgh F, Poppe K, Velkeniers B, et al. Fetal microchimeric cells in blood of women with an autoimmune thyroid disease. PLoS One 2011; 6(12):e29646.
  47. Renné C, Ramos Lopez E, Steimle-Grauer SA, Ziolkowski P, Pani MA, Luther C, et al. Thyroid fetal male microchimerisms in mothers with thyroid disorders: presence of Y-chromosomal immunofluorescence in thyroid-infiltrating lymphocytes is more prevalent in Hashimoto’s thyroiditis and Graves’ disease than in follicular adenomas. The Journal of Clinical Endocrinology & Metabolism 2004; 89(11):5810-14.
  48. Gürel SA, Gürel H. The evaluation of determinants of early postpartum low mood: the importance of parity and inter-pregnancy interval. European Journal of Obstetrics & Gynecology and Reproductive Biology 2000; 91(1):21-4.
  49. Ando T, Imaizumi M, Graves PN, Unger P, Davies TF. Intrathyroidal fetal microchimerism in Graves’ disease. The Journal of Clinical Endocrinology & Metabolism 2002; 87(7):3315-20.
  50. Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood, The Journal of the American Society of Hematology 1999; 93(6):2033-7.
  51. Lambert NC, Lo YD, Erickson TD, Tylee TS, Guthrie KA, Furst DE, et al. Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood, The Journal of the American Society of Hematology 2002; 100(8):2845-51.
  52. Endo Y, Negishi I, Ishikawa O. Possible contribution of microchimerism to the pathogenesis of Sjogren's syndrome. Rheumatology 2002; 41(5):490-5.
  53. Kekow M, Barleben M, Drynda S, Jakubiczka S, Kekow J, Brune T. Long-term persistence and effects of fetal microchimerisms on disease onset and status in a cohort of women with rheumatoid arthritis and systemic lupus erythematosus. BMC musculoskeletal disorders 2013; 14(1):1-8.
  54. Johnson KL, McAlindon TE, Mulcahy E, Bianchi DW. Microchimerism in a female patient with systemic lupus erythematosus. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 2001; 44(9):2107-11.
  55. Chan WF, Atkins CJ, Naysmith D, van der Westhuizen N, Woo J, Nelson JL. Microchimerism in the rheumatoid nodules of patients with rheumatoid arthritis. Arthritis & Rheumatism 2012; 64(2):380-8.
  56. Rak JM, Maestroni L, Balandraud N, Guis S, Boudinet H, Guzian MC, et al. Transfer of the shared epitope through microchimerism in women with rheumatoid arthritis. Arthritis & Rheumatism 2009; 60(1):73-80.
  57. Khosrotehrani KI, Reyes RR, Johnson KL, Freeman RB, Salomon RN, Peter I, et al. Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Human Reproduction 2007; 22(3):654-61.
  58. Wang Y, Iwatani H, Ito T, Horimoto N, Yamato M, Matsui I, et al. Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochemical and biophysical research communications 2004; 325(3):961-7.
  59. Cha D, Khosrotehrani K, Kim Y, Stroh H, Bianchi DW, Johnson KL. Cervical cancer and microchimerism. Obstetrics & Gynecology 2003; 102(4):774-81.
  60. Hromadnikova I, Kotlabova K, Pirkova P, Libalova P, Vernerova Z, Svoboda B, et al. The occurrence of fetal microchimeric cells in endometrial tissues is a very common phenomenon in benign uterine disorders, and the lower prevalence of fetal microchimerism is associated with better uterine cancer prognoses. DNA and cell biology 2014; 33(1):40-8.
  61. Fassbender A, Debiec-Rychter M, Bree RV, Vermeesch JR, Meuleman C, Tomassetti C, et al. Lack of evidence that male fetal microchimerism is present in endometriosis. Reproductive Sciences 2015; 22(9):1115-21.
  62. Pritchard S, Hoffman AM, Johnson KL, Bianchi DW. Pregnancy-associated progenitor cells: an under-recognized potential source of stem cells in maternal lung. Placenta 2011; 32:S298-303.
  63. Mahmood U, O’Donoghue K. Microchimeric fetal cells play a role in maternal wound healing after pregnancy. Chimerism 2014; 5(2):40-52.
  64. Nassar D, Droitcourt C, Mathieu‐d'Argent E, Kim MJ, Khosrotehrani K, Aractingi S. Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing. The FASEB Journal 2012; 26(1):149-57.
  65. Huu SN, Oster M, Uzan S, Chareyre F, Aractingi S, Khosrotehrani K. Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proceedings of the National Academy of Sciences 2007; 104(6):1871-6.
  66. Aractingi S, Berkane N, Bertheau P, Le Goué C, Dausset J, Uzan S, et al. Fetal DNA in skin of polymorphic eruptions of pregnancy. The Lancet 1998; 352(9144):1898-901.