طراحی و ساخت یک پلاسمید عرضه سطحی حاوی قطعه ژنی رمزگذار پروتئین E6 نوترکیب ویروس پاپیلومای انسانی تیپ 18 جهت بیان در مخمر Yarrowia lipolytica

نوع مقاله : اصیل پژوهشی

نویسندگان

1 کارشناس ارشد زیست‌شناسی سلولی و مولکولی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران.

2 استادیار گروه زیست‌شناسی سلولی و مولکولی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران.

3 استاد گروه میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهراء، تهران، ایران.

4 محقق بالارتبه، انستیتو تحقیقات ملی کشاورزی، غذا و محیط، دانشگاه Prais-Saclay، پاریس، فرانسه.

چکیده

مقدمه: ویروس­ های پاپیلومای انسانی (HPV) با بیش از 100 تیپ، به دو دسته­ با ریسک پایین و بالا تقسیم می­ شوند که تیپ­ های 16 و 18 به‌تنهایی در 70% موارد سرطان گردنه­ رحم دخیل­ اند. در حال حاضر، توسعه­ پروتئین ­های نوترکیب HPV با هدف واکسیناسیون یا درمان مورد توجه دانشمندان می‌باشد. از این رو، مطالعه حاضر با هدف ساخت یک پلاسمید نوترکیب عرضه‌کننده در سطح رمزگذار پروتئین E6 ویروس پاپیلومای انسانی تیپ 18 انجام شد.
روشکار: قطعه­ ژنی رمزگذار پروتئین E6 تیپ 18 ویروس پاپیلومای انسانی (HPV18) با استفاده از DNA فرد مبتلا به ویروس به‌عنوان الگو، با روش PCR آشیانه­ ای مورد تکثیر قرار گرفت و پس از برش آنزیمی دوگانه­ Hind III و SfiI، به درون پلاسمید عرضه­ کننده در سطح pINA1317-YLCWP110 همسانه­ سازی شد.
یافته ­ها: روش ­های مولکولی نظیر PCR و برش آنزیمی دوگانه صحت همسانه­ سازی پلاسمید­ نوترکیب pINA1317-YLCWP110-E6 را مورد تأیید قرار داد. همچنین، نتایج به‌دست آمده از تعیین توالی به‌روش سنگر و هم­ردیفی با داده­ های موجود در بانک ژن منجر به تأیید نهایی صحت توالی، ترادف و چارچوب قرار­ گرفتن قطعه­­ ژنی در جایگاه مناسب گردید.
نتیجه­ گیری: نتایج این مطالعه، همسانه­ سازی موفق قطعه­ ژنی رمزگذار پروتئین E6 ویروس HPV18 را در پلاسمید عرضه کننده در سطح pINA1317-YLCWP110-E6 در جایگاه و جهت مناسب مورد تأیید قرار داد. این پلاسمید در صورت بیان در میزبان مخمری Yarrowia lipolytica، قابلیت استفاده به‌عنوان واکسن، مارکر مولکولی یا جنبه­ درمانی خواهد داشت. 

کلیدواژه‌ها


عنوان مقاله [English]

Developing a plasmid for surface display containing the recombinant E6 protein of human papilloma virus type 18 for expression in yeast Yarrowia lipolytica

نویسندگان [English]

  • Mohaddeseh Koohichapan 1
  • Solmaz Moniri Javadhesari 2
  • Farshad Darvishi Harzevili 3
  • Catherine Madzak 4
1 M.Sc. of Cellular and Molecular Biology, School of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
2 Assistant Professor, Department of Cellular and Molecular Biology, School of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
3 Professor, Department of Microbiology, School of Biological Sciences, Alzahra University, Tehran, Iran.
4 INRAE France’s New National Research Institute for Agriculture, Food and Environment, Paris-Saclay University, Paris, France.
چکیده [English]

Introduction: Human papillomaviruses (HPV) with more than 100 types are categorized as low-risk and high-risk types. Types 16 and 18 of the virus alone are involved in 70% of cervical cancers. Currently, development of recombinant proteins of HPV for vaccination or therapy purposes has attracted scientists. Therefore, the present study was performed aimed to construct a surface display plasmid encoding E6 protein of human papillomavirus type 18.
Methods: The DNA fragment encoding E6 protein of HPV18 was amplified by nested-PCR using DNA of a HPV18 positive person as PCR template. Then, the amplified fragment was double digested with HindIII and SfiI and cloned into the surface display plasmid pINA1317-YLCWP110.
Results: Cloning of E6 protein encoding gene fragment into pINA1317-YLCWP110 plasmid was confirmed using PCR and restriction endonuclease double digestion. Also, the results of Sanger sequencing of the recombinant pINA1317-YLCWP110-E6 plasmid and alignment to gene bank further ensured the sequence accuracy, cloning position and reading frame of the gene in the recombinant vector.
Conclusion: DNA fragment encoding E6 protein of HPV18 was successfully cloned into surface display plasmid pINA1317-YLCWP110 in appropriate locus and frame. Altogether, the recombinant pINA1317-YLCWP110-E6 plasmid constructed in this study can be expressed in the yeast host Yarrowia lipolytica and the resulted E6 protein may be used as a prophylactic or therapeutic vaccine or molecular marker.

کلیدواژه‌ها [English]

  • Recombinant E6 protein
  • Surface display plasmid
  • Type 18
  • Human Papilloma Virus
  • Cloning
  1. Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nature reviews cancer 2002; 2(5):342-50.
  2. Ma B, Maraj B, Tran NP, Knoff J, Chen A, Alvarez RD, et al. Emerging human papillomavirus vaccines. Expert opinion on emerging drugs 2012; 17(4):469-92.
  3. Wang R, Pan W, Jin L, Huang W, Li Y, Wu D, et al. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer letters 2020; 471:88-102.
  4. Roden RB, Stern PL. Opportunities and challenges for human papillomavirus vaccination in cancer. Nature Reviews Cancer 2018; 18(4):240-54.
  5. Moniri Javadhesari S, Khakpour K, Pourseif S, Mozaffari H. Common Genotypes of Human Papillomavirus in East Azerbaijan Population using HPV Direct Flow CHIP Kit. Iran J Obstet Gynecol Infertil 2020; 23(5):18-25.
  6. Malary M, Moosazadeh M, Hamzehgardeshi Z, Afshari M, Moghaddasifar I, Afsharimoghaddam A. The prevalence of cervical human papillomavirus infection and the most at-risk genotypes among Iranian healthy women: A systematic review and meta-analysis. International journal of preventive medicine 2016; 7.
  7. de Sanjose S, Brotons M, Pavon MA. The natural history of human papillomavirus infection. Best practice & research Clinical obstetrics & gynaecology 2018; 47:2-13.
  8. Chabeda A, Yanez RJ, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus research 2018; 5:46-58.
  9. Mirkovic J, Howitt BE, Roncarati P, Demoulin S, Suarez‐Carmona M, Hubert P, et al. Carcinogenic HPV infection in the cervical squamo‐columnar junction. The Journal of pathology 2015; 236(3):265-71.
  10. Mena M, Frias-Gomez J, Taberna M, Quirós B, Marquez S, Clavero O, et al. Epidemiology of human papillomavirus-related oropharyngeal cancer in a classically low-burden region of southern Europe. Scientific reports 2020; 10(1):1-11.
  11. Vorsters A, Bosch FX, Bonanni P, Franco EL, Baay M, Simas C, et al. Prevention and control of HPV infection and HPV-related cancers in Colombia-a meeting report. BMC proceedings 2020; 14(9):1-13.
  12. Alemany L, Saunier M, Alvarado‐Cabrero I, Quiros B, Salmeron J, Shin HR, et al. Human papillomavirus DNA prevalence and type distribution in anal carcinomas worldwide. International journal of cancer 2015; 136(1):98-107.
  13. Haręża DA, Wilczyński JR, Paradowska E. Human papillomaviruses as infectious agents in gynecological cancers. oncogenic properties of viral proteins. International Journal of Molecular Sciences 2022; 23(3):1818.
  14. Bahramabadi R, Honarvar Z, Iranpour M, Arababadi MK, Dehesh T, Dabiri B, et al. Epidemiological Study of Various HPV Strains in Cervical Fluid Samples in South-Eastern Iran, 2018–2020. Archives of Iranian Medicine 2021; 24(9):678.
  15. Kesheh MM, Keyvani H. The prevalence of HPV genotypes in Iranian population: An Update. Iranian journal of pathology 2019; 14(3):197.
  16. Sabet F, Mosavat A, Ghezeldasht SA, Basharkhah S, Shamsian SA, Abbasnia S, et al. Prevalence, genotypes and phylogenetic analysis of human papillomaviruses (HPV) in northeast Iran. International journal of infectious diseases 2021; 103:480-8.
  17. Moniri Javadhesari S, Pourseif S, Khakpour K. Nucleic acid vaccines for human papillomavirus; prevention or treatment. Iran J Obstet Gynecol Infertil 2019; 22(7):77-88.
  18. Aggarwal P. HPV Infection: Pathogenesis and Detection. InPreventive Oncology for the Gynecologist 2019:101-115.
  19. Cheng L, Wang Y, Du J. Human papillomavirus vaccines: an updated review. Vaccines 2020; 8(3):391.
  20. Derstenfeld A, Cullingham K, Ran ZC, Litvinov IV. Review of evidence and recommendation for human papillomavirus (HPV) vaccination of Canadian males over the age of 26 years. Journal of Cutaneous Medicine and Surgery 2020; 24(3):285-91.
  21. Wang D, Liu X, Wei M, Qian C, Song S, Chen J, et al. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Nature communications 2020; 11(1):1-15.
  22. Schiffman M, Doorbar J, Wentzensen N, De Sanjosé S, Fakhry C, Monk BJ, et al. Carcinogenic human papillomavirus infection. Nature reviews Disease primers 2016; 2(1):1-20.
  23. Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology 2009; 384(2):324-34.
  24. Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology 2013; 445(1-2):115-37.
  25. Thomas M, Banks L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. Journal of General Virology 1999; 80(6):1513-7.
  26. Alibek K, Irving S, Sautbayeva Z, Kakpenova A, Bekmurzayeva A, Baiken Y, et al. Disruption of Bcl-2 and Bcl-xL by viral proteins as a possible cause of cancer. Infectious agents and cancer 2014; 9(1):1-13.
  27. Owczarek B, Gerszberg A, Hnatuszko-Konka K. A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals. BioMed research international 2019; 2019.
  28. Wei HY, Jiang LF, Xue YH, Fang DY, Guo HY. Secreted expression of dengue virus type 2 full-length envelope glycoprotein in Pichia pastoris. Journal of virological methods 2003; 109(1):17-23.
  29. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Critical reviews in biotechnology 2016; 36(6):1110-22.
  30. Nielsen J. Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered 2013; 4(4):207-11.
  31. Lin K, Roosinovich E, Ma B, Hung CF, Wu TC. Therapeutic hpv DNA vaccines. Immunologic research 2010; 47(1):86-112.
  32. Yue L, Chi Z, Wang L, Liu J, Madzak C, Li J, et al. Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. Journal of Microbiological Methods 2008; 72(2):116-23.
  33. Trimble CL, Clark RA, Thoburn C, Hanson NC, Tassello J, Frosina D, et al. Human papillomavirus 16-associated cervical intraepithelial neoplasia in humans excludes CD8 T cells from dysplastic epithelium. The Journal of Immunology 2010; 185(11):7107-14.
  34. De Jong A, O’Neill T, Khan AY, Kwappenberg KM, Chisholm SE, Whittle NR, et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine 2002; 20(29-30):3456-64.
  35. Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. The Lancet 1996; 347(9014):1523-7.
  36. Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clinical Cancer Research 2002; 8(12):3676-85.
  37. Santin AD, Bellone S, Palmieri M, Zanolini A, Ravaggi A, Siegel ER, et al. Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: a phase I escalating-dose trial. Journal of virology 2008; 82(4):1968-79.
  38. Baldwin PJ, van der Burg SH, Boswell CM, Offringa R, Hickling JK, Dobson J, et al. Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clinical Cancer Research 2003; 9(14):5205-13.
  39. Zheng Y, Wang Z, Ji X, Sheng J. Display of a sucrose isomerase on the cell surface of Yarrowia lipolytica for synthesis of isomaltulose from sugar cane by-products. 3 Biotech 2019; 9(5):1-7.
  40. Bazan SB, de Alencar Muniz Chaves A, Aires KA, Cianciarullo AM, Garcea RL, Ho PL. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris. Archives of virology 2009; 154(10):1609-17.
  41. Degenhardt YY, Silverstein SJ. Gps2, a protein partner for human papillomavirus E6 proteins. Journal of virology 2001; 75(1):151-60.
  42. Mirshahabi H, Soleimanjahi H, Pourpak Z, Meshkat Z, Hassan ZM. Production of human papilloma virus type 16 e6 oncoprotein as a recombinant protein in eukaryotic cells. Iranian journal of cancer prevention 2012; 5(1):16.
  43. Khakpour K. Designing and amplification of an Expression vector for E6 Protein of human papillomavirus type 18 in yeast [Master's thesis]. Iran. Faculty of Basic Science, Azarbaijan Shahid Madani Univrersity; 2020.
  44. Pourseif S. Constructing a cassete for the expression of E7 protein of human papillumavirus type 18 in pichia pastoris [Master's thesis]. Iran. Faculty of Basic Science, Azarbaijan Shahid Madani Univrersity; 2020.