ارزیابی ژن‌ها و مسیرهای مولکولی دخیل در ایجاد بیماری‌های قلبی -عروقی در بیماران پره‌اکلامپسی با رویکرد سیستم بیولوژی

نوع مقاله : اصیل پژوهشی

نویسندگان

1 دکترای تخصصی ژنتیک پزشکی، آزمایشگاه ژنتیک و بالینی نورژن، مرکز تحقیقات مولکولی، اهواز، ایران.

2 استادیار گروه زنان و مامایی، دانشکده پزشکی، دانشگاه علوم پزشکی یاسوج، یاسوج، ایران.

3 کارشناس ارشد پرستاری داخلی- جراحی، دانشکده پرستاری و مامایی، دانشگاه علوم پزشکی ایران، تهران، ایران.

4 رزیدنت گروه زنان و مامایی، مرکز تحقیقات پیشگیری از بیماری‌های زنان، دانشکده پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.

5 رزیدنت گروه زنان و مامایی، واحد توسعه تحقیقات بالینی شهید اکبرآبادی، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران.

6 دکترای تخصصی علوم سلولی کاربردی، گروه سلول‌های بنیادی و زیست‌شناسی تکوینی، مرکز تحقیقات علوم سلولی، پژوهشگاه رویان برای زیست‌شناسی و فناوری سلول‌های بنیادی، تهران، ایران.

7 مربی پرستاری مراقبت‌های ویژه، دانشکده پیراپزشکی، دانشگاه علوم پزشکی ایلام، ایلام، ایران.

10.22038/ijogi.2025.89527.6485

چکیده

مقدمه: فشار خون بالا در پره‌اکلامپسی، یکی از مهم‌ترین عوارض در این بیماران است که خطر ابتلاء به بیماری‌های قلبی - عروقی را افزایش می‌دهد. با توجه به اینکه ژن­ ها، نقش مهمی از طریق فرآیند­های بیولوژیکی در بروز فشار خون دارند، استفاده از آنالیز بیوانفورماتیک که یک روش جدید و نوین می­ باشد، می ­تواند در شناسایی ژن ­های اثرگذار مؤثر باشد. مطالعه حاضر با هدف بررسی نقش ژن‌ها و مسیرهای مولکولی در بروز بیماری‌های قلبی عروقی در بیماران پره‌اکلامپسی انجام شد.
روشکار: برای استخراج داده ­ها از پایگاه داده GEO استفاده گردید. دیتابیس­ های استخراج شده شامل GSE48424، GSE99007 و GSE91189 بودند. این داده ­ها در ارتباط با بیماران مبتلا به اشکال شدید و غیرشدید پره ­اکلامپسی بود. معیار انتخاب شده برای داده ­ها شامل قدر مطلق فولد چنج بیشتر از 1 و 05/0>p بود. در نهایت آنالیز داده­ ها با استفاده از ابزار GEO2R انجام گردید.
یافته­ ها: پس از خوشه‌بندی ژن‌ها برای مجموعه داده‌ها، ۲۳۵ ژن با بیان بالا و ۵۴۶ ژن با بیان پایین در فرم غیر شدید و شدید پره­ اکلامپسی به‌دست آمد. بر اساس نتایج، تغییر بیان ژن­ها بین بیماران و افراد سالم عمدتاً در فرآیند­های بیولوژیکی شامل التهاب، چسبندگی سلولی و متابولیسم سلولی نقش داشتند. ژن­ هایی که اصلی‌ترین نقش و بیشترین ارتباط با سایر ژن­ ها را داشتند شامل: HLTF، SUMO1، KDR، SNRPD3، DERL2، VCP، EIF4B، NOTCH1، SOCS3، CBL، ICAM-1، ITGB2، STRN، MEF2A و PTPRC بودند. همچنین مهم‌ترین میکروآرناها miR-3135-3P، miR-5085 و miR-6-5085 بودند.
نتیجه ­گیری: احتمالاً شناسایی مسیر­های بالادست و پایین‌دست ژن­ ها می ­تواند در طراحی استراتژی­ های پیشگیری کننده و درمانی کمک کننده باشد که نیازمند مطالعات بیشتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genes and Molecular Pathways Involved in the Development of Cardiovascular Diseases in Preeclampsia Patients Using Systems Biology Approach

نویسندگان [English]

  • Javad Mohammadi-Asl 1
  • Parvinsadat Eslamnik 2
  • Majid Majidimehr 3
  • Nasim Jafari 4
  • Shima Ghezelbash 5
  • Arsalan Jalili 6
  • Fatemeh Ghiasi 7
  • Zahra Asadi Kalameh 2
1 PhD in Medical Genetics, Noorgene Genetic & Clinical Laboratory, Molecular Research Center, Ahvaz, Iran.
2 Assistant Professor, Department of Obstetrics and Gynecology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
3 M.Sc. of Medical-Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran.
4 Resident, Department of Obstetrics and Gynecology, Preventative Gynecology Diseases Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
5 Resident, Department of Obstetrics and Gynecology, Shahid Akbarabadi Clinical Research Development Unit, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
6 PhD in Applied Cell Sciences, Stem Cell and Developmental Biology Department, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran.
7 Instructor of Critical Care Nursing, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran.
چکیده [English]

Introduction: High blood pressure in preeclampsia is one of the most important complications in these patients, which increases the risk of cardiovascular disease. Given that genes play an important role in the occurrence of blood pressure through biological processes, the use of bioinformatics analysis, which is a new and innovative method, can be effective in identifying influential genes. The present study was conducted with aim to evaluate the role of genes and molecular pathways in the development of cardiovascular diseases in preeclampsia patients.
Methods: The GEO database was used to extract data. The extracted databases included GSE48424, GSE99007, and GSE91189. These data were related to patients with severe and non-severe forms of preeclampsia. The criteria selected for the data included |logFC| greater than one and p<0.05. Finally, data analysis was performed using the GEO2R tool.
Results: After clustering genes for the dataset, 235 highly expressed genes and 546 low expressed genes were obtained in non-severe and severe forms of preeclampsia. The results showed that the changes in gene expression between patients and healthy individuals were mainly involved in biological processes including inflammation, cell adhesion, and cell metabolism. The genes that had the most important roles and the most correlations with other genes were HLTF, SUMO1, KDR, SNRPD3, DERL2, VCP, EIF4B, NOTCH1, SOCS3, CBL, ICAM-1, ITGB2, STRN, MEF2A, and PTPRC. Also, the most important microRNAs were miR-3135-3P, miR-5085, and miR-6-5085.
Conclusion: Identifying the upstream and downstream pathways of genes can probably help in designing preventive and therapeutic strategies, which requires further studies.

کلیدواژه‌ها [English]

  • Biology System
  • Cardiovascular Disease
  • Hypertension
  • Preeclampsia
  1. Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A, et al. The etiology of preeclampsia. American journal of obstetrics and gynecology 2022; 226(2):S844-66.
  2. Magee LA, Nicolaides KH, Von Dadelszen P. Preeclampsia. New England Journal of Medicine 2022; 386(19):1817-32.
  3. Wheeler SM, Myers SO, Swamy GK, Myers ER. Estimated prevalence of risk factors for preeclampsia among individuals giving birth in the US in 2019. JAMA Network Open 2022; 5(1):e2142343-.
  4. Tadu S, Yerroju K, Gudey S. A comparative study of coagulation profile in normal pregnancy, mild preeclampsia, and severe preeclampsia patients. Journal of South Asian Federation of Obstetrics and Gynaecology 2023; 15(1):71-5.
  5. Sterrett ME, Austin B, Barnes RM, Chang EY. Optic nerve sheath diameter in severe preeclampsia with neurologic features versus controls. BMC Pregnancy and Childbirth 2022; 22(1):224.
  6. Phoswa WN, Khaliq OP. The role of oxidative stress in hypertensive disorders of pregnancy (preeclampsia, gestational hypertension) and metabolic disorder of pregnancy (gestational diabetes mellitus). Oxidative medicine and cellular longevity 2021; 2021(1):5581570.
  7. Larijani SS, Biglari E, Biglarifar R. The correlation between serum sodium levels and preeclampsia severity in pregnant women; a cross-sectional study. Journal of Renal Injury Prevention 2025; 14(4):e38440-.
  8. Kazemi N, Bordbar A, Bavarsad SS, Ghasemi P, Bakhshi M, Rezaeeyan H. Molecular insights into the relationship between platelet activation and endothelial dysfunction: Molecular approaches and clinical practice. Molecular Biotechnology 2024; 66(5):932-47.
  9. Gumusoglu SB, Schickling BM, Vignato JA, Santillan DA, Santillan MK. Selective serotonin reuptake inhibitors and preeclampsia: a quality assessment and meta-analysis. Pregnancy hypertension 2022; 30:36-43.
  10. Rajaei E, Shahbazian N, Rezaeeyan H, Mohammadi AK, Hesam S, Zayeri ZD. The effect of lupus disease on the pregnant women and embryos: a retrospective study from 2010 to 2014. Clinical rheumatology 2019; 38(11):3211-5.
  11. Yang M, Wang M, Li N. Advances in pathogenesis of preeclampsia. Archives of Gynecology and Obstetrics 2024; 309(5):1815-23.
  12. Joshi A, Rienks M, Theofilatos K, Mayr M. Systems biology in cardiovascular disease: a multiomics approach. Nature Reviews Cardiology 2021; 18(5):313-30.
  13. Shabani M, Eghbali M, Abiri A, Abiri M. Comprehensive microarray analysis of severe preeclampsia placenta to identify differentially expressed genes, biological pathways, hub genes, and their related non-coding RNAs. Placenta 2024; 155:22-31.
  14. Hampp S, Kiessling T, Buechle K, Mansilla SF, Thomale J, Rall M, et al. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression. Proceedings of the National Academy of Sciences 2016; 113(30):E4311-9.
  15. Zadeh FJ, Mohammadtaghizadeh M, Bahadori H, Saki N, Rezaeeyan H. The role of exogenous Fibrinogen in cardiac surgery: stop bleeding or induce cardiovascular disease. Molecular biology reports 2020; 47(10):8189-98.
  16. Guo Z, Zhang B, Yang D, Wang L. Multidimensional roles of cfDNA fragmentomics in preeclampsia: from placental hypoxia and TLR9 inflammation to clinical risk stratification. Frontiers in Medicine 2025; 12:1539651.
  17. Baczyk D, Audette MC, Drewlo S, Levytska K, Kingdom JC. SUMO-4: A novel functional candidate in the human placental protein SUMOylation machinery. PLoS One 2017; 12(5):e0178056.
  18. Li J, Zhou Y, Liu Y, Dai B, Zhang YH, Zhang PF, et al. Sorafenib inhibits caspase-1 expression through suppressing TLR4/stat3/SUMO1 pathway in hepatocellular carcinoma. Cancer biology & therapy 2018; 19(11):1057-64.
  19. Xu X, Han K, Zhu J, Mao H, Lin X, Zhang Z, et al. An inhibitor of cholesterol absorption displays anti-myeloma activity by targeting the JAK2-STAT3 signaling pathway. Oncotarget 2016; 7(46):75539.
  20. Yao Y, Li H, Da X, He Z, Tang B, Li Y, et al. SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension. Pulmonary pharmacology & therapeutics 2019; 55:38-49.
  21. Wang T, Guo Y, Liu S, Zhang C, Cui T, Ding K, et al. KLF4, a key regulator of a transitive triplet, acts on the TGF-β signaling pathway and contributes to high-altitude adaptation of Tibetan pigs. Frontiers in genetics 2021; 12:628192.
  22. Mukai Y, Wang CY, Rikitake Y, Liao JK. Phosphatidylinositol 3-kinase/protein kinase Akt negatively regulates plasminogen activator inhibitor type 1 expression in vascular endothelial cells. American Journal of Physiology-Heart and Circulatory Physiology 2007; 292(4):H1937-42.
  23. Eyries M, Montani D, Girerd B, Favrolt N, Riou M, Faivre L, et al. Familial pulmonary arterial hypertension by KDR heterozygous loss of function. European Respiratory Journal 2020; 55(4).
  24. Feizollahi N, Zayeri ZD, Moradi N, Zargar M, Rezaeeyan H. The effect of coagulation factors polymorphisms on abortion. Frontiers in Biology 2018; 13(3):190-6.
  25. Koedoot E, van Steijn E, Vermeer M, González-Prieto R, Vertegaal AC, Martens JW, et al. Splicing factors control triple-negative breast cancer cell mitosis through SUN2 interaction and sororin intron retention. Journal of Experimental & Clinical Cancer Research 2021; 40(1):82.
  26. Czarnek M, Sarad K, Karaś A, Kochan J, Bereta J. Non-targeting control for MISSION shRNA library silences SNRPD3 leading to cell death or permanent growth arrest. Molecular Therapy Nucleic Acids 2021; 26:711-31.
  27. Jean-Charles PY, Yu SM, Abraham D, Kommaddi RP, Mao L, Strachan RT, et al. Mdm2 regulates cardiac contractility by inhibiting GRK2-mediated desensitization of β-adrenergic receptor signaling. JCI insight 2017; 2(17):e95998.
  28. Chen J, Pan J, Wang J, Song K, Zhu D, Huang C, et al. Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway. Scientific reports 2016; 6(1):30957.
  29. Oh RS, Haak AJ, Smith KM, Ligresti G, Choi KM, Xie T, et al. RNAi screening identifies a mechanosensitive ROCK-JAK2-STAT3 network central to myofibroblast activation. Journal of cell science 2018; 131(10):jcs209932.
  30. Kuang D, Dong L, Liu L, Zuo M, Xie Y, Li T, et al. [Retracted] SOCS3 Gene Polymorphism and Hypertension Susceptibility in Chinese Population: A Two‐Center Case‐Control Study. BioMed Research International 2021; 2021(1):8445461.
  31. Ozkan ZS, Simsek M, Ilhan F, Deveci D, Godekmerdan A, Sapmaz E. Plasma IL-17, IL-35, interferon-γ, SOCS3 and TGF-β levels in pregnant women with preeclampsia, and their relation with severity of disease. The Journal of Maternal-Fetal & Neonatal Medicine 2014; 27(15):1513-7.
  32. Hong Y, Keylock A, Jensen B, Jacques TS, Ogunbiyi O, Omoyinmi E, et al. Cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma gene. Neurology: Genetics 2020; 6(4):e448.
  33. Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. The Lancet 2013; 381(9863):333-42.
  34. Lee IT, Luo SF, Lee CW, Wang SW, Lin CC, Chang CC, et al. Overexpression of HO-1 protects against TNF-α-mediated airway inflammation by down-regulation of TNFR1-dependent oxidative stress. The American journal of pathology 2009; 175(2):519-32.
  35. Thichanpiang P, Harper SJ, Wongprasert K, Bates DO. TNF-α-induced ICAM-1 expression and monocyte adhesion in human RPE cells is mediated in part through autocrine VEGF stimulation. Molecular vision 2014; 20:781.
  36. Guo ML, Kook YH, Shannon CE, Buch S. Notch3/VEGF-A axis is involved in TAT-mediated proliferation of pulmonary artery smooth muscle cells: Implications for HIV-associated PAH. Cell death discovery 2018; 4(1):85.
  37. Ataam JA, Mercier O, Lamrani L, Amsallem M, Ataam JA, Ataam SA, et al. RETRACTED: ICAM-1 promotes the abnormal endothelial cell phenotype in chronic thromboembolic pulmonary hypertension. The Journal of Heart and Lung Transplantation 2019; 38(9):982-996.
  38. Li H, Hu S, Pang Y, Li M, Chen L, Liu F, et al. Bufalin inhibits glycolysis-induced cell growth and proliferation through the suppression of Integrin β2/FAK signaling pathway in ovarian cancer. American Journal of Cancer Research 2018; 8(7):1288.
  39. Manicassamy S, Pulendran B. Modulation of adaptive immunity with Toll-like receptors. InSeminars in immunology 2009; 21(4):185-193.
  40. Witvrouwen I, Mannaerts D, Ratajczak J, Boeren E, Faes E, Van Craenenbroeck AH, et al. MicroRNAs targeting VEGF are related to vascular dysfunction in preeclampsia. Bioscience reports 2021; 41(8):BSR20210874.