شناسایی شبکه تنظیمی عمکردی miRNA-mRNA در سقط مکرر: آنالیز بیوانفورماتیکی پرزهای جفتی انسانی

نوع مقاله : اصیل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه ژنتیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد، ایران.

2 دانشیار، گروه ژنتیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد، ایران.

10.22038/ijogi.2025.82344.6191

چکیده

مقدمه: سقط خود‌به‌خودی مکرر (RSA)، یک اختلال تولیدمثلی است که مسئله حل نشده‌ای را در زنان ایجاد می‌کند. miRNAها ممکن است در تنظیم رشد جنین و حفظ بارداری نقش داشته باشند. مطالعه حاضر با هدف بررسی پروفایل miRNA در پرز جفتی زنان با سقط مکرر با مطالعات بیوانفورماتیکی انجام شد.
روشکار: در این مطالعه، پروفایل بیانی mRNA و miRNA سلول‌های پرز جفتی از پایگاه GEO دریافت شدند. بعد از به‌دست آوردن هدف‌های miRNAهای دارای تغییر بیان، اشتراک این هدف ­ها با mRNAهای کاهشی/افزایشی به‌دست آمد. در مرحله بعد هویت‌شناسی ژنی (GO) و مسیرهای KEGG، برای ژن ­های مشترک انجام شد. شبکه میانکنش پروتئین- پروتئین و ژن­ های کلیدی مورد بررسی قرار گرفت. در نهایت شبکه تنظیمی miRNA-mRNA رسم شد.
یافته ­ها: تعداد 123 miRNA با تغییر بیان (16 عدد کاهش بیان و 107 عدد افزایش بیان) و 670 ژن با تغییر بیان (شامل 269 ژن کاهش بیان و 366 ژن با افزایش بیان) آنالیز شدند. بعد از ایجاد اشتراک میان هدف‌های miRNAها و ژن‌های با تغییر بیان، 219 ژن مشترک به‌دست آمد. نتایج آنالیز KEGG و GO نشان داد که ژن‌ها در مسیرهای پرولاکتین، اکسی‌توسین، تولید اینترلوکین 6 و تمایز لوکوسیتی نقش دارند. همچنین در شبکه miRNA-mRNA ترسیم شده، miR-548ap-5p و miR-320b با بیشترین امتیاز مشخص شدند.
نتیجه ­گیری: مطالعه حاضر miRNA­ها و mRNAهای دارای تغییر بیان و  همچنین ژن‌های کلیدی در سلول­ های پرز جفتی با RSA را شناسایی کرد. این مطالعه می‌تواند مارکرهای زیستی جدیدی را برای تشخیص یا درمان احتمالی RSA پیشنهاد کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of a functional miRNA–mRNA regulatory network in recurrent miscarriage: bioinformatics analysis of human chorionic villi

نویسندگان [English]

  • Yass Rohani 1
  • Somayeh Raeisi 2
1 M.Sc. Student, Department of Genetics, School of Basic Sciences, Shahrekord University, Shahrekord, Iran.
2 Associate Professor, Department of Genetics, School of Basic Sciences, Shahrekord University, Shahrekord, Iran.
چکیده [English]

Introduction: Recurrent spontaneous abortion (RSA) is a reproductive disorder that makes an unresolved issue in women. miRNAs may play a role in regulating embryonic growth and sustaining pregnancy. The present study was conducted with aim to investigate the miRNA profile in the chorionic villi of women with recurrent abortion using bioinformatics studies.
Methods: In this study, the expression profiles of mRNA and miRNA from chorionic villi cells were obtained from the GEO database. After identifying the differentially expressed miRNAs, the overlap between miRNA targets and the upregulated/downregulated mRNAs was determined. Gene Ontology (GO) analysis and KEGG pathways were then conducted for the overlapped genes. Protein-protein interaction networks and key genes were analyzed. Finally, the miRNA-mRNA regulatory network was constructed.
Results: A total of 123 miRNAs with differential expression (16 downregulated and 107 upregulated) and 670 genes with differential expression (including 269 downregulated and 366 upregulated) were analyzed. After making the overlap between the miRNA targets and differentially expressed genes, 219 overlap genes were identified. The results of KEGG and GO analysis indicated that these genes are involved in prolactin, oxytocin, B cell receptor pathways, interleukin-6 production processes, and leukocyte differentiation. Additionally, in the miRNA-mRNA network, miR-548ap-5p and miR-320b were identified with the highest scores.
Conclusion: The present study identified differentially expressed miRNAs and mRNAs, as well as key genes in the chorionic villi cells associated with RSA. This study may suggest new biomarkers for the potential diagnosis or treatment of RSA.

کلیدواژه‌ها [English]

  • miRNA-mRNA network
  • Recurrent spontaneous abortion (RSA)
  • Signaling pathway
  1. Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertility and sterility 2012; 98(5):1103-11.
  2. Guo H, Gao H, Li J, Cong Y, Chen Q, Wang Y, et al. Impacts of medroxyprogesterone acetate on oocytes and embryos: matched case-control study in women with stage III–IV ovarian endometriosis undergoing controlled ovarian hyperstimulation for in vitro fertilization. Annals of translational medicine 2020; 8(6).
  3. Baek KH, Lee EJ, Kim YS. Recurrent pregnancy loss: the key potential mechanisms. Trends in molecular medicine 2007; 13(7):310-7.
  4. El Hachem H, Crepaux V, May-Panloup P, Descamps P, Legendre G, Bouet PE. Recurrent pregnancy loss: current perspectives. International journal of women's health 2017: 331-45.
  5. Sham AK, Yiu MG, Ho WY. Psychiatric morbidity following miscarriage in Hong Kong. General hospital psychiatry 2010; 32(3):284-93.
  6. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 2020; 9(2):276.
  7. Li L, Peng M, Xue W, Fan Z, Wang T, Lian J, et al. Integrated analysis of dysregulated long non-coding RNAs/microRNAs/mRNAs in metastasis of lung adenocarcinoma. Journal of translational medicine 2018; 16:1-14.
  8. Li Y, Kowdley KV. MicroRNAs in common human diseases. Genomics, Proteomics and Bioinformatics 2012; 10(5):246-53.
  9. Li D, Li J. Association of miR-34a-3p/5p, miR-141-3p/5p, and miR-24 in decidual natural killer cells with unexplained recurrent spontaneous abortion. Medical science monitor: international medical journal of experimental and clinical research 2016; 22:922.
  10. Patronia MM, Potiris A, Mavrogianni D, Drakaki E, Karampitsakos T, Machairoudias P, et al. The Expression of microRNAs and Their Involvement in Recurrent Pregnancy Loss. Journal of Clinical Medicine 2024; 13(12):3361.
  11. Parveen F, Agrawal S. Recurrent miscarriage and micro-RNA among north Indian women. Reproductive Sciences 2015; 22(4):410-5.
  12. Ladomery MR, Maddocks DG, Wilson ID. MicroRNAs: their discovery, biogenesis, function and potential use as biomarkers in non-invasive prenatal diagnostics. International journal of molecular epidemiology and genetics 2011; 2(3):253.
  13. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer research 2008; 68(10):3566-72.
  14. Jeon YJ, Choi YS, Rah H, Kim SY, Choi DH, Cha SH, et al. Association study of microRNA polymorphisms with risk of idiopathic recurrent spontaneous abortion in Korean women. Gene 2012; 494(2):168-73.
  15. Karami N, Mirabutalebi SH, Montazeri F, Kalantar SM, Sheikhha MH, Eftekhar M. Aberrant expression of microRNAs 16 and 21 and gene targets in women with unexplained recurrent miscarriage: A case-control study. International journal of reproductive biomedicine 2018; 16(10):617.
  16. Fang Y, Feng X, Xue N, Cao Y, Zhou P, Wei Z. STAT3 signaling pathway is involved in the pathogenesis of miscarriage. Placenta 2020; 101:30-8.
  17. Cera N, Pinto J, Pignatelli D. The Role of Oxytocin in Polycystic Ovary Syndrome: A Systematic Review. Current Issues in Molecular Biology 2024; 46(6):5223-41.
  18. Ng SW, Norwitz GA, Pavlicev M, Tilburgs T, Simón C, Norwitz ER. Endometrial decidualization: the primary driver of pregnancy health. International journal of molecular sciences 2020; 21(11):4092.
  19. Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. InSeminars in reproductive medicine 2007; 25(06):445-453. © Thieme Medical Publishers.
  20. Pantos K, Grigoriadis S, Maziotis E, Pistola K, Xystra P, Pantou A, et al. The role of interleukins in recurrent implantation failure: a comprehensive review of the literature. International journal of molecular sciences 2022; 23(4):2198.
  21. Ma J, Gao W, Li D. Recurrent implantation failure: A comprehensive summary from etiology to treatment. Frontiers in Endocrinology 2023; 13:1061766.
  22. Warning JC, McCracken SA, Morris JM. A balancing act: mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction 2011; 141(6):715-24.
  23. Bert S, Ward EJ, Nadkarni S. Neutrophils in pregnancy: New insights into innate and adaptive immune regulation. Immunology 2021; 164(4):665-76.
  24. Banerjee M, Saxena M. Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clinica chimica acta 2012; 413(15-16):1163-70.
  25. Papamitsou Τ, Toumpa O, Dimou T, Kavvadas D, Papanastasiou A, Anastasiadou P, et al. Immunohistochemical study of the immunological markers IL-1β and IL-6 in placental tissues in recurrent pregnancy loss. Archives of Hellenic Medicine/Arheia Ellenikes Iatrikes 2022; 39(6).
  26. Tabibzadeh S, Sun XZ. Cytokine expression in human endometrium throughout the menstrual cycle. Human Reproduction 1992; 7(9):1214-21.
  27. Van Mourik MS, Macklon NS, Heijnen CJ. Embryonic implantation: cytokines, adhesion molecules, and immune cells in establishing an implantation environment. Journal of Leucocyte Biology 2009; 85(1):4-19.
  28. Wu Z, Wang M, Liang G, Jin P, Wang P, Xu Y, et al. Pro-inflammatory signature in decidua of recurrent pregnancy loss regardless of embryonic chromosomal abnormalities. Frontiers in immunology 2021; 12:772729.
  29. Alecsandru D, Klimczak AM, Velasco JA, Pirtea P, Franasiak JM. Immunologic causes and thrombophilia in recurrent pregnancy loss. Fertility and sterility 2021; 115(3):561-6.
  30. Liu XY, Fan Q, Wang J, Li R, Xu Y, Guo J, et al. Higher chromosomal abnormality rate in blastocysts from young patients with idiopathic recurrent pregnancy loss. Fertility and Sterility 2020; 113(4):853-64.
  31. Coomarasamy A, Dhillon-Smith RK, Papadopoulou A, Al-Memar M, Brewin J, Abrahams VM, et al. Recurrent miscarriage: evidence to accelerate action. The Lancet 2021; 397(10285):1675-82.
  32. Garrido-Gimenez C, Alijotas-Reig J. Recurrent miscarriage: causes, evaluation and management. Postgraduate medical journal 2015; 91(1073):151-62.