کاربرد سلولهای بنیادی در درمان اختلالات تولید مثلی مردان و زنان: مقاله مروری

نوع مقاله : مروری

نویسندگان

1 کارشناس ارشد مامایی، مرکز تحقیقات تعیین کننده‌های اجتماعی سلامت، دانشکده پرستاری و مامایی، دانشگاه علوم پزشکی ایلام، ایلام، ایران.

2 دانشجوی دکترای تخصصی پرستاری، دانشکده پرستاری و مامایی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران.

3 استادیار گروه پرستاری، دانشکده پرستاری و مامایی، دانشگاه علوم پزشکی ایلام، ایلام، ایران.

4 کارشناس ارشد مامایی، دانشکده پرستاری و مامایی، دانشگاه علوم پزشکی ایلام، ایلام، ایران.

5 دانشجوی دکترای تخصصی بهداشت باروری، دانشکده پرستاری و مامایی، دانشگاه علوم پزشکی تهران، تهران، ایران. کارشناس ارشد مامایی، دانشکده پرستاری و مامایی، دانشگاه علوم پزشکی ایلام، ایلام، ایران.

چکیده

مقدمه: سلول‌های بنیادی به آن دسته از سلول‌های بدن اطلاق می‌شود که هنوز تمایز نیافته و دارای قدرت خود تکثیری بوده و قابلیت تمایز و تبدیل به انواع دیگر سلول‌های بدن را دارند. با توجه به اهمیت و حساسیت باروری در جوامع بشری و تلاش جهت چاره‌جویی برای کاهش اختلالات باروری در مردان و زنان، مطالعه مروری حاضر با هدف بررسی کاربرد سلول­های بنیادی در درمان اختلالات تولیدمثلی زنان و مردان انجام شد.
روش‌کار: در این مطالعه مروری، اطلاعات مربوط به کاربرد سلول­های بنیادی در درمان اختلالات تولید مثلی مردان و زنان از پایگاه‌های اطلاعاتی نظیر SID، Magiran، PubMed، Irandoc، Iranmedx Scopus، Google Scholar  و web of science با استفاده از کلید واژه­های فارسی: سلول‌های بنیادی، اختلالات تولیدمثلی، مردان و زنان و کلید واژه­های انگلیسی women، reproductive disordersmen، stem cell و infertility بدون محدودیت زمانی جستجو شد. تجزیه و تحلیل داده­ها به صورت کیفی انجام شد. در نهایت برای تنظیم مقاله از 48 مقاله به زبان فارسی و انگلیسی استفاده گردید.
یافته‌ها: استفاده از سلول­های بنیادی تخمدان و رحم و سلول‌های بنیادی اسپرماتوگونیال در درمان ناباروری ناشی از شیمی‌درمانی، بیماری­های اتوایمیون، بیماری­های مرتبط با کروموزوم X، خطرات محیطی، اندومتریوز نوجوانی یا کیست­های تخمدانی و کانسرهای تخمدانی قبل از یائسگی، حفظ باروری، پیشگیری از انتقال بیماری‌های ژنتیکی از کاربردهای سلول­های بنیادی در علوم پزشکی می­باشد که تعدادی از آنها در حیوانات و انسان و تعدادی دیگر فقط در حیوانات مورد بررسی و تأیید قرار گرفته است.
نتیجه‌گیری: سلول­های بنیادی می­توانند در درمان اختلالات تولیدمثلی زنان و مردان کاربردهای بسیاری داشته باشند، حال آنکه در مسیر استفاده از سلول­های بنیادی در نمونه­های انسانی چالش­های تکنیکی و اخلاقی وجود دارد که نیازمند تأمل بیشتری می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of stem cells in the treatment of reproductive disorders in men and women: review article

نویسندگان [English]

  • Nazanin Rezaei 1
  • Saba Farzi 2
  • Hamid Taghinejad 3
  • Mahnaz Shafieian 4
  • Safoura Taheri 5
1 M.Sc. of Midwifery, Social Determinants of Health Research Center, School of Nursing & Midwifery, Ilam University of Medical Sciences, Ilam, Iran.
2 Phd student of Nursing, School of Nursing and Midwifery, Isfahan University of Medical Sciences, Isfahan, Iran.
3 Assistant Professor, Department of Nursing, School of Nursing and Midwifery, Ilam University of Medical Sciences, Ilam, Iran.
4 M.Sc. of Midwifery, School of Nursing & Midwifery, Ilam University of Medical Sciences, Ilam, Iran.
5 PhD student of Reproductive Health, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran. M.Sc. of Midwifery, School of Nursing & Midwifery, Ilam University of Medical Sciences, Ilam, Iran.
چکیده [English]

Introduction: Stem cells refer to those body's cells which are still undifferentiated and have proliferative power and the ability to differentiate into other types of cells in the body. Considering the importance and sensitivity of fertility in human societies and efforts to search for a solution to reduce fertility disorders in men and women, this review study was performed with aim to evaluate the application of stem cells in the treatment of reproductive disorders in women and men.
Methods: In this review study, the information on the use of stem cells in the treatment of reproductive disorders in men and women was searched in databases such as SID, Magiran, PubMed, Irandoc, Iranmedx Scopus, Google scholar, web of science using the keywords of stem cells, infertility, reproductive disorders, men and women without time limitation. Data analysis was carried out qualitatively. Finally, 48 papers in English and Persian were used for the regulation of the article.
Results: The ovarian and uterine  stem cells and Spermatogonial stem cells in the treatment of infertility caused by chemotherapy, autoimmune diseases, diseases associated with X chromosome, environmental hazards, adolescence endometriosis or ovarian cysts and ovarian cancer before menopause, fertility preservation, prevention of transmission of genetic diseases are from the application of stem cells in medical sciences that some of them has been reviewed and approved in animals and humans, and some only in animals.
Conclusion: Stem cells can be used in the treatment of reproductive disorders in women and men; however there are technical and ethical challenges in the use of stem cells in human samples which need more contemplation.

کلیدواژه‌ها [English]

  • Fertility preservation
  • Infertility
  • Men
  • Stem cells
  • Women oil
  • Iranian Traditional Medicine
  1. Ghasemzadeh H, Kalaee M, Drostkar K, Khaki A. Stem cells and their application in reproduction, Fifteenth Iranian Veterinary Congress, Tehran, Iran; 2008.
  2. Beheshti A. Stem cells are body builders. J Biom Eng 2011; 113:14. (Persian).
  3. Nazarzade M. Stem cell applications. Stem Cell. Availabel at: URL: http://stemcelldreammz.mihanblog.com; 2012.
  4. Bendikson K. Making Human Eggs from Stem Cells. USC Fertility. Availabel at: URL: uscfertility.org/making-human-eggs-stem-cells/; 2012.
  5. Female infertility: TCM and stem cell therapy. ReLife International Medical Centre. Availabel at: URL: relifemed.com/infertility/cutting-edge-and-promising-solutions-for-female; 2015.
  6. New hopes to increase during the period of fertility of women. Danakhabar. Availabel at: URL: http://danakhabar.com/fa/news/1154618; 2013.
  7. Piroze M, Valad Beigi T, Shahverdi A, Baharvand H. Evaluation of L-Carnitine effect on the testis tissue of mature male rat exposed with cadmium. Anatom Sci J 2008; 6(3-4):591. (Persian).
  8. Unexpected progress about stem cells. Lahzeh Nama News Journal; 2016.
  9. Weckstein L. Stem cells to expand female window of fertility. Reproductive Science Center of the Bay Area. Availabel at: URL: https://rscbayarea.com/blog/stem-cells-to-expand-female-window-of-fertility; 2012.
  10. Beheshti A. The new step in the treatment of infertility, scientists with the first map of the human germ cell growth path. Clinical Medicine. Availabel at: URL: http://www.clinicalmedicine.ir/post-4930.aspx; 2012.
  11. Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, Reddy ST, et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development 2004; 131(10):2257-68.
  12. Lin H, Spradling AC. Germline stem cell division and egg chamber development in transplanted. Drosophila germaria. Dev Biol 1993; 159(1):140-52.
  13. Borum K. Oogenesis in the mouse. A study of the meiotic prophase. Exp Cell Res 1961; 24:495-507.
  14. Faddy MJ, Jones EC, Edwards RG. An analytical model for ovarian follicle dynamics. J Exp Zool 1976; 197:173-85. 
  15. McLaren A. Meiosis and differentiation of mouse germ cells. Symp Soc Exp Biol 1984; 38:7-23.
  16. Faddy MJ. Follicle dynamics during ovarian ageing. Mol Cell Endocrinol 2000; 163(1-2):43-8.
  17. Faddy MJ, Telfer E, Gosden RG. The kinetics of pre-antral follicle development in ovaries of CBA/Ca mice during the first 14 weeks of life. Cell Tissue Kinet 1987; 20:551-60.
  18. Richardson SJ, Senikas V, Nelson JF. Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 1987; 65(6):1231-7.
  19. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 2004; 428(6979):145-50.
  20. Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB. Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol 2004; 2:20.
  21. Lee HJ, Selesniemi K, Niikura Y, Niikura T, Klein R, Dombkowski DM, et al. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol 2007; 25(22):3198-204.
  22. Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 2006; 441(7097):1109-14.
  23. Virant-Klun I, Stimpfel M, Skutella T. Ovarian pluripotent/multipotent stem cells and in vitro oogenesis in mammals. Histol Histopathol 2011; 26(8):1071-82.
  24. Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 2009; 11(5):631-6.
  25. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012; 18(3):413-21.
  26. Eguizabal N, Montserrat R, Vassena N, Barragan M, Garreta E, Garcia-Quevedo L, et al. Complete meiosis fromhuman induced pluripotent stem cells. Stem Cells 2011; 29(8):1186-95.
  27. Hayashi K, Ogushi S, Kurimoto K, Himamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012; 338(6109):971-5.
  28. Evron A, Blumenfeld Z. Ovarian stem cells-the pros and cons. Clin Med Insights Reprod Health 2013; 20(7):43-7.
  29. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A 2003; 100(20):11457-62.
  30. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004; 427(6970):148-54.
  31. Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003; 300(5623):1251-6.
  32. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res 2004; 32:D23-6.
  33. Dias Neto E, Correa RG, Verjovski-Almeida S, Briones MR, Nagai MA, da Silva W Jr, et al. Shotgun sequencing of the human transcriptome with ORF expressed sequence tags. Proc Natl Acad Sci U S A 2000; 97(7):3491-6.
  34. Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature 2002; 418(6895):293-300.
  35. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 2004; 101(16):6062-7.
  36. Yoshimizu T, Sugiyama N, De Felice M, Yeom YI, Ohbo K, Masuko K, et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ 1999; 41(6):675-84.
  37. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005; 122(2):303-15.
  38. Lee HJ, Selesniemi K, Niikura Y, Niikura T, Klein R, Dombkowski DM, et al. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol 2007; 25(22):3198-204.
  39. Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 2006; 441(7097):1109-14.
  40. Movahedi SH. Fertility of women through stem cells. New Veterinarians and Scientific News. Availabel at: URL: http://dr-movahedi.blogfa.com/post-465.aspx; 2016.
  41. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. A livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 2004; 364(9443):1405-10.
  42. Apperley JF, Reddy N. Mechanism and management of treatment-related gonadal failure in recipients of high dose chemoradiotherapy. Blood Rev 1995; 9(2):93-116.
  43.  Al-Hasani S, Diedrich K, van der Ven H, Reinecke A, Hartje M, Krebs D. Cryopreservation of human oocytes. Hum Reprod 1987; 2(8):695-700.
  44. Carroll J, Wood MJ, Whittingham DG. Normal fertilization and development of frozen-thawed mouse oocytes: protective action of certain macromolecules. Biol Reprod 1993; 48(3):606-12.
  45. Eroglu A, Toth TL, Toner M. Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes. Fertil Steril 1998; 69(5):944-57.
  46. Gook DA, Osborn SM, Johnston WI. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod 1993; 8(7):1101-9.
  47. Porcu E, Fabbri R, Seracchioli R, Ciotti PM, Magrini O, Flamigni C. Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril 1997; 68(4):724-6.
  48. Yoon TK, Chung HM, Lim JM, Han SY, Ko JJ, Cha KY. Pregnancy and delivery of healthy infants developed from vitrified oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil Steril 2000; 74(1):180-1.
  49. Gosiengfiao Y. Progress, history and promise of ovarian cryopreservation and transplantation for pediatric cancer patients. Cancer Treat Res 2007; 138:130-4.
  50. Deanesly R. Immature rat ovaries grafted after freezing and thawing. J Endocrinol 1954; 11(2):197-200.
  51.  Kim SS, Battaglia DE, Soules MR. The future of human ovarian cryopreservation and transplantation: fertility and beyond. Fertil Steril 2001; 75(6):1049-56.
  52. Parrot D. The fertility of mice with orthotopic ovarian grafts derived from frozen tissue. J Reprod Fertil 1960; 1(3):230-41.
  53. Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at -196 degrees C. Hum Reprod 1994; 9(4):597-603.
  54. Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med 2000; 342(25):1919.
  55.  Oktay K, Buyuk E, Veeck L, Zaninovic N, Xu K, Takeuchi T, et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet 2004; 363(9412):837-40.
  56.  Lee DM, Yeoman RR, Battaglia DE, Stouffer RL, Zelinski-Wooten MB, Fanton JW, et al. Live birth after ovarian tissue transplant. Nature 2004; 428(6979):137-8.
  57.  Radford JA, Lieberman BA, Brison DR, Smith AR, Critchlow JD, Russell SA, et al. Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin’s lymphoma. Lancet 2001; 357(9263):1172-5.
  58. Kim SS, Battaglia DE, Soules MR. The future of human ovarian cryopreservation and transplantation: fertility and beyond. Fertil Steril 2001; 75(6):1049-56.
  59. Shaw JM, Bowles J, Koopman P, Wood EC, Trounson AO. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod 1996; 11(8):1668-73.
  60. Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod 1996; 11(7):1487-91.
  61. Silber SJ, Lenahan KM, Levine DJ, Pineda JA, Gorman KS, Friez MJ, et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med 2005; 353(1):58-63.
  62. Donnez J, Dolmans MM, Pirard C, Van Langendonckt A, Demylle D, Jadoul P, et al. Allograft of ovarian cortex between two genetically nonidentical sisters: case report. Hum Reprod 2007; 22(10):2653-9.
  63. Silber SJ, DeRosa M, Pineda J, Lenahan K, Grenia D, Gorman K, et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod 2008; 23(7):1531-7.
  64.  Padykula HA. Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci 1991; 622:47-56.
  65. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70(6):1738-50.
  66. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 2004; 292(1):81-5.
  67. Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, et al. Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction 2008; 135(4):551-8.
  68. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells 2007; 25(8):2082-6.
  69. Bratincsák A, Brownstein MJ, Cassiani-Ingoni R, Pastorino S, Szalayova I, Tóth ZE, et al. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells 2007; 25(11):2820-6.
  70. Mints M, Jansson M, Sadeghi B, Westgren M, Uzunel M, Hassan M, et al. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod 2008; 23(1):139-43.
  71. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22(7):1338-45.
  72. Yen BL, Chien CC, Chen YC, Chen JT, Huang JS, Lee FK, et al. Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng Part A 2008; 14(1):9-17.
  73. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod 2007; 22(11):2903-11.
  74. Wolff EF, Wolff AB, Du H, Taylor HS. Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod Sci 2007; 14(6):524-33.
  75. Nematolahi Mahan SN, Kermani M, Latifpour M, Salehinejad P. Properties of mesenchymal cells in human umbilical cord matrix. Fertil Infertil J 2008; 15:1-3. (Persian).
  76. Lin H. The stem-cell niche theory: lessons from flies. Nat Rev Genet 2002; 3(12):931-40.
  77. Khanhzad M, Abolhasani F, Koruji SM, Ragrdy Kashani I, Aliakbari F. The roles of Sertoli cells in fate determinations of spermatogonial stem cells. Tehran Univ Med J 2016; 73(12):878-87. (Persian).
  78. Nayernia K. Stem cells in male reproduction. Int J Reprod Biomed 2009; 7:2.
  79. Eguizabal N, Montserrat R, Vassena N, Barragan M, Garreta E, Garcia-Quevedo L, et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells 2011; 29(8):1186-95.
  80. Zhu Y, Hu HL, Li P, Yang S, Zhang W, Ding H, et al. Generationofmale germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study. Asian J Androl 2012; 14(4):574-9.
  81. Kanatsu-Shinohara M, Lee J, Inoue K, Ogonuki N, Miki H, Toyokuni S, et al. Pluripotency of a single spermatogonial stem cell in mice. Biol Reprod 2008; 78(4):681-7.
  82. McLaren A. Primordial germcells in themouse. Dev Biol 2003; 262(1):1-15.
  83. McLean DJ. Spermatogonial stem cell transplantation and testicular function. Cell Tissue Res 2005; 322(1):21-31.
  84. Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003; 300(5623):1251-6.
  85. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, et al. In vitro-differentiated embryonic stem cells give rise to male gametesthat can generate offspring mice. Dev Cell 2006; 11(1):125-32.
  86. Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, et al. Viable fertilemice generatedfrom fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev 2010; 6(3):390-7.
  87. Clark AT, Bodnar MS, Fox M, Rodriquez RT, Abeyta MJ, Firpo MT, et al. Spontaneous differentiation of germcells fromhuman embryonic stemcells in vitro. Hum Mol Gene 2004; 13(7):727-39.
  88. Kee K, Gonsalves JM, Clark AT, Pera RA. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev 2006; 15(6):831-7.
  89. Mikkola M, Olsson C, Palgi J, Ustinov J, Palomaki T, Horelli-Kuitunen N, et al. Distinct differentiation characteristics of individual human embryonic stem cell lines. BMC Dev Biol 2006; 6:40.
  90. Chen HF, Kuo HC, Chien CL, Shun CT, Yao YL, Ip PL, et al. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germcell differentiation. Hum Reprod 2007; 22(2):567-77.
  91. Tilgner K, Atkinson SP, Golebiewska A, Stojkovi´c M, Lako M, Armstrong L. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells 2008; 26(12):3075-85.
  92. Easley CA, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2012; 2(3):440-6.
  93. Yang S, Bo J, Hu H, Guo X, Tian R, Sun C, et al, Derivation of male germ cells frominduced pluripotent stemcells in vitro and in reconstituted seminiferous tubules. Cell Prolif 2012; 45(2):91-100.
  94. Li P, Hu H, Yang S, Tian R, Zhang Z, Zhang W, et al. Differentiation of induced pluripotent stem cells into male germ cells in vitro through embryoid body formation and retinoic acid or testosterone induction. Bio Med Res Int 2013; 2013:608728.
  95. Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol 2013; 997:23-33.
  96. Xu XL, Yi F, Pan HZ, Duan SL, Ding ZC, Yuan GH, et al. Progress and prospects in stem cell therapy. Acta Pharmacol Sin 2013; 34(6):741-6.
  97. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011; 146(4):519-32.
  98. Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M. A signaling principle for the specification of the germcell lineage in mice. Cell 2009; 137(3):571-84.
  99. Cai H, Xia X, Wang L, Liu Y, He Z, Guo Q, et al. In vitro and in vivo differentiation of induced pluripotent stem cells into male germ cells. Biochem Biophys Res Commun 2013; 433(3):286-91.
  100. Easley CA, Simerly CR, Schatten G. Stem cell therapeutic possibilities: future therapeutic options for malefactor and female-factor infertility? Reprod Biomed Online 2013; 27(1):75-80.
  101. The use of stem cells in the field of infertility is still not operational. Iranian Stem Cell Information Center.  Availabel at: URL: http://www.bonyannews.ir/News/ctl/ArticleView/mid/902/articleId/363; 2011.
  102. Sperm production of skin/genetic infertility in men treated. Mehr News. Availabel at: URL: http://www.mehrnews.com/news/2283712/; 2014.
  103. Scientists made babies from mouse skin cells. TechChunch. Availabel at: URL: https://techcrunch.com/2016/10/21/scientists-made-babies-from-mouse-skin-cells/; 2016
  104. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice. Nature Med 2000; 6(1):29.
  105. Mohzab A, Heidari M, Salehkho S, Jedytehrani M, Akhondi MM. Preserving fertility in boys and men with cancer. Fertil Infertil J 2011; 12(2):73-84. (Persian).
  106. Zeng W, Avelar GF, Rathi R, Franca LR, Dobrinski I. The length of the spermatogenic cycle is conserved in porcine and ovine testis xenografts. J Androl 2006; 27(4):527-33.
  107. Zeng W, Rathi R, Pan H, Dobrinski I. Comparison of global gene expression between porcine testis tissue xenografts and porcine testis in situ. Mol Reprod Dev 2007; 74(6):674-9.
  108. Fujita K, Tsujimura A, Hirai T, Ohta H, Matsuoka Y, Miyagawa Y, et al. Effect of human leukemia cells in testicular tissues grafted into immunodeficient mice. Int J Urol 2008; 15(8):733-8.
  109. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 1994; 91(24):11303-7.
  110. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 1994; 91(24):11298-302.
  111. Dobrinski I. Transplantation of germ line stem cells for the study and manipulation of spermatogenesis. Ernst Schering Res Found Workshop 2006; 60:175-93.
  112. Radford J. Restoration of fertility after treatment for cancer. Horm Res 2003; 59(Suppl 1):21-3.
  113. Geens M, Goossens E, De Block G, Ning L, Van Saen D, Tournaye H. Autologous spermatogonial stem cell transplantation in man: current obstacles for a future clinical application. Hum Reprod Update 2008; 14:121-30.
  114. Schlatt S, Kim SS, Gosden R. Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction 2002; 124(3):339-46.
  115. Honaramooz A, Li MW, Penedo MC, Meyers S, Dobrinski I. Accelerated maturation of primate testis by xenografting into mice. Biol Reprod 2004; 70(5):1500-3.
  116. Schlatt S, Honaramooz A, Ehmcke J, Goebell PJ, Rübben H, Dhir R, et al. Limited survival of adult human testicular tissue as ectopic xenograft. Hum Reprod 2006; 21(2):384-9.
  117. Keros V, Hultenby K, Borgström B, Fridström M, Jahnukainen K, Hovatta O. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum Reprod 2007; 22(5):1384-95.
  118. Wyns C, Curaba M, Martinez-Madrid B, Van Langendonckt A, François-Xavier W, Donnez J. Spermatogonial survival after cryopreservation and short-term orthotopic immature human cryptorchid testicular tissue grafting to immunodeficient mice. Hum Reprod 2007; 22(6):1603-11.
  119. Luetjens CM, Stukenborg JB, Nieschlag E, Simoni M, Wistuba J. Complete spermatogenesis in orthotopic but not in ectopic transplants of autologously grafted marmoset testicular tissue. Endocrinology 2008; 149(4):1736-47.
  120. Behbahani S, Karimi M. Stem cell. J Biom Eng 2012; 136:26.
  121. The use of stem cells for the treatment of infertility. Hamshahri Online. Availabel at: URL: http://www.hamshahrionline.ir/details/129212/Science/medical; 2010.
  122. Bahadur G. Ethics of testicular stem cell medicine. Hum Reprod 2004; 19(12):2702-10.
  123. Treatment of male infertility with stem cells. Iran Newspaper. Availabel at: URL: http://www.magiran.com/npview.asp?ID=2731102; 2013.
  124. Zadhydr S. Male infertility treatment by sperm from stem cells. Medical and Clinical Laboratory Science. Availabel at: URL: http://macls.ir/?p=4099; 2016.

Rivas A. Infertility treatment may soon include artificial sperm, egg cells derived from stem cells. Medical Daily. Availabel at: URL: http://www.medicaldaily.com/infertility-treatment-may-soon-include-artificial-sperm-egg-cells-derived-stem-cells-315622. Accessed December 28, 2014