مدل‌سازی الگوی فصلی زایمان‎های زودرس: مطالعه سری‌های زمانی شهر مشهد

نوع مقاله: اصیل پژوهشی

نویسندگان

1 دانشجوی دکتری اقلیم‌ شناسی شهری، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران.

2 دکتری اقلیم‌ شناسی، استادیار اقلیم ‌شناسی، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران.

3 استاد گروه زنان و مامایی، مرکز تحقیقات سلامت زنان، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران.

4 کارشناسی ارشد اقلیم ‌شناسی کاربردی، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران.

چکیده

مقدمه: زایمان زودرس وضعیت پیچیده‎ای است که عوامل خطر آن بر حسب فصل‎های مختلف فرق می کند. یکی از عوامل محیطی که ممکن است بر وقوع زایمان های زودرس تأثیرگذار باشد، فصل است. مطالعه حاضر با هدف بررسی الگوی فصلی زایمان های زودرس شهر مشهد با استفاده از مدل‎های سری زمانی ARIMA انجام شد.
روش‎ کار: اطلاعات مربوط به زایمان‌های زودرس در طی سال های 92-1382 از مرکز تحقیقات سلامت زنان تهیه و با توجه به توابع خودهمبستگی و خودهمبستگی جزئی و نیز وجود و عدم وجود روند در داده‎ها سعی شد تا مدل‎های سری زمانی مناسب برازش داده شود. پس از انتخاب مدل‎ها، معنی‎داری پارامترها با برآورد خطای معیار و مقادیر t بررسی شد و سپس آزمون‎های نکوئی برازش از جمله آزمون کولموگروف- اسمیرنوف و رایان جوینر برای صحت سنجی مدل‎ها به کار گرفته شد. همچنین با استفاده از شاخص فصلی (SI)، الگوی فصلی شیوع زایمان‎های زودرس نیز استخراج شد.
یافته ها: نتایج مطالعه نشان داد که مدل  ARIMA بهترین مدل جهت بررسی الگوی فصلی شیوع زایمان زودرس برازش شد. همچنین از تعداد 4743، گروه های سنی 30-23 سال بیشترین زایمان زودرس را داشتند و فراوانی وقوع فصلی حاکی از آن بود که فصل زمستان و دی ماه بالاترین درصد وقوع را به خود اختصاص داده اند وکمترین تعداد نیز مربوط به فصل بهار بود.
نتیجه‎گیری: به طور کلی زایمان‎های زودرس با تغییرات فصلی دارای تغییرات می‎باشند و عوامل محیطی بر بروز این بیماری تأثیر قابل توجهی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the seasonal patterns of preterm deliveries: time series study in Mashhad

نویسندگان [English]

  • Fatemeh Mayvaneh 1
  • Ali Reza Entezari 2
  • Nayereh Khadem 3
  • Tayebeh Shojaee 4
1 PhD student in urban climatology, School of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran.
2 PhD of climatology, Assistant Professor, Department of Climatology, School of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran.
3 Head of Women's health Research Center, Professor, Department of Obstetrics and Gynecology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
4 M.Sc. of practical climatology, School of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran
چکیده [English]

Introduction: Preterm delivery is a complicated situation that its risk factors are different based on different seasons. One of the environmental factors which may be effective on the occurrence of preterm delivery is season. This study was conducted with aim to investigate seasonal pattern of preterm deliveries in Mashhad using ARIMA time series models.
Methods:The Preterm delivery related data were collected during 2003 to 2013 from Women's Health Research Center and regarding the autocorrelation function (ACF) and partial autocorrelation function (PACF), and also the absence of trends in data, it was tried to assign goodness of fit to time series models. After selecting the models, the significance of parameters was investigated with the estimation of criterion error and t-values and then, the goodness of fit such as Kolmogorov-Smirnov test and Ryan Joyner test were used for validation of the models. In addition, using the seasonal index (SI), the seasonal pattern of prevalence of preterm delivery was extracted.
Results: The results of this study indicated that ARMIMA model (1,1,1)×(0,0,1) was fitted as the best one for investigation of seasonal pattern of the prevalence of preterm delivery. In addition, among 4743, the age groups of 23-30 years had the highest rate of preterm delivery. The frequency of seasonal occurrence indicates that winter in December had the highest percentage of occurrence of preterm deliveries, and the lowest rate was related to spring.
Conclusion: In general, preterm deliveries vary with seasonal changes, and environmental factors are significantly effective on the occurrence of this disease.

کلیدواژه‌ها [English]

  • Premature birth
  • Season
  • Time series
  • Trend
  1. WHO: recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta Obstet Gynecol Scand 1977; 56(3):247-53.
  2. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012; 379(9832):2151-61.
  3. Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health 2013; 10(Suppl 1):S2.
  4. Lawn JE, Kerber K, Enweronu-Laryea C, Cousens S. 3.6 million neonatal deaths--what is progressing and what is not? Semin Perinatol 2010; 34(6):371-86.
  5. Baroutis G, Mousiolis A, Hoffman D, Antsaklis A. Preterm birth seasonality in Greece: an epidemiological study. J Matern Fetal Neonatal Med 2012; 25(8):1406-12.
  6. Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 2010; 88(1):31-8.
  7. Seifi M, Farshbaf-Khalili A, Aghaee H, Pourzeinali S. The relationship of iron deficiency anemia with preterm delivery in pregnant women referred to health centers of Tabriz: a case-control study. Iran J Obstet Gynecol Infertil 2015; 18(159):8-17. (Persian).
  8. Rojansky N, Brzezinski A, Schenker JG. Seasonality in human reproduction: an update. Hum Reprod 1992; 7(6):735-45.
  9. Bronson FH. Seasonal variation in human reproduction: environmental factors. Q Rev Biol 1995; 70(2):141-64.
  10. Nieuwenhuijsen MJ, Dadvand P, Grellier J, Martinez D, Vrijheid M. Environmental risk factors of pregnancy outcomes: a summary of recent meta-analyses of epidemiological studies. Environ Health 2013; 12(1):6.
  11. Lee SJ, Steer PJ, Filippi V. Seasonal patterns and preterm birth: a systematic review of the literature and an analysis in a London‐based cohort. BJOG. 2006; 113(11):1280-8.
  12. Fulford AJ, Rayco‐Solon P, Prentice AM. Statistical modelling of the seasonality of preterm delivery and intrauterine growth restriction in rural Gambia. Paediatr Perinat Epidemiol 2006; 20(3):251-9.
  13. 13.   Rayco-Solon P, Fulford AJ, Prentice AM. Differential effects of seasonality on preterm birth and intrauterine growth restriction in rural Africans. Am J Clin Nutr 2005; 81(1):134-9.
  14. 14.   Jalaludin B, Mannes T, Morgan G, Lincoln D, Sheppeard V, Corbett S. Impact of ambient air pollution on gestational age is modified by season in Sydney, Australia. Environ Health 2007; 6:16-25.
  15. Bodnar LM, Simhan HN. The prevalence of preterm birth and season of conception. Paediatr Perinat Epidemiol 2008; 22(6):538-45.
  16. Yackerson N, Piura B, Sheiner E. The influence of meteorological factors on the emergence of preterm delivery and preterm premature rupture of membrane. J Perinatol 2008; 28(10):707-11.
  17. Matsuda S, Kahyo H. Geographic differences in seasonality of preterm births in Japan. Hum Biol 2013; 70(5):919-35.
  18. Mansourghanaei M. Seasonal pattern of preterm birth. J Guilan Univ Med Sci 2011; 20(79):77-83. (Persian).
  19. Bahrami N, Soleimani MA, Rashvand F, Nia HS, Aboutorabi SA, Javadi ZH. Association between seasonal patterns and birth weight. Koomesh 2012; 13(4):427-33. (Persian).
  20. Auger N, Kuehne E, Goneau M, Daniel M. Preterm birth during an extreme weather event in Quebec, Canada: a “natural experiment”. Matern Child Health J 2011; 15(7):1088-96.
  21. Alai Taleghani M. Geomorphology of Iran. Tehran: Publications Gomes; 2009.
  22. Akbari M, Jargeh MR, Madani Alsadat HR. Decline Of groundwater levels using Geographic Information System (GIS) case study: Mashhad aquifer. J Soil Water Conserv 2009; 16(14):63-78. (Persian).
  23. Hyndman RJ, Koehler AB, Snyder RD, Grose S. A state space framework for automatic forecasting using exponential smoothing methods. Int J Forec 2002; 18(3):439-54.
  24. Canova F, Hansen BE. Are seasonal patterns constant over time? A test for seasonal stability. J Busin Econ Stati 1995; 13(3):273-52.
  25. Hyndman RJ, Khandakar Y. Automatic time series forecasting: the forecast package for R7. Onash Econometrics and Business Statistics Working. Available at: URL: http://www. jstatsoft. org/v27/i03; 2008.
  26. Box GE, Jenkins GM. Time series analysis: forecasting and control. 2th ed. New Jersey: John Wiley & Sons; 1976.
  27. Box GE, Jenkins GM, Reinsel GC. Time series analysis: forecasting and control. 4th ed. New Jersey: John Wiley & Sons; 2011.
  28. Matsuda S,  Kahyo H. Geographic differences in seasonality of preterm births in Japan. Hum Biol 1998; 70(5):919-35.
  29. Basu R, Malig B, Ostro B. High ambient temperature and the risk of preterm delivery. Am J Epidemiol 2010; 172(10):1108-17.
  30. Darrow LA, Strickland MJ, Klein M, Waller LA, Flanders WD, Correa A, et al. Seasonality of birth and implications for temporal studies of preterm birth. Epidemiology 2009; 20(5):699-706.
  31. Butler AS, Behrman RE. Preterm birth: causes, consequences, and prevention. Washington, D.C.: National Academies Press; 2007.
  32. Wang J, Williams G, Guo Y, Pan X, Tong S. Maternal exposure to heatwave and preterm birth in Brisbane, Australia. BJOG 2013; 120(13):1631-41.
  33. Carolan-Olah M, Frankowska D. High environmental temperature and preterm birth: a review of the evidence. Midwifery 2014; 30(1):50-9.
  34. Schifano P, Lallo A, Asta F, De Sario M, Davoli M, Michelozzi P. Effect of ambient temperature and air pollutants on the risk of preterm birth, Rome 2001–2010. Environ Int 2013; 61:77-87.
  35. Wolf J, Armstrong B. The association of season and temperature with adverse pregnancy outcome in two German states, a time-series analysis. PLoS One 2012; 7(7):e40228.
  36. Strand LB, Barnett AG, Tong S. The influence of season and ambient temperature on birth outcomes: a review of the epidemiological literature. Environ Res 2011; 111(3):451-62.