مروری بر توسعه روش‌های تشخیص سریع سرطان دهانه رحم (داخل اپی‌تلیوم) مبتنی بر اندازه‌گیری لود ویروس پاپیلومای انسانی نوع 16 و 18 با استفاده از زیست‌حسگرهای الکتروشیمیایی

نوع مقاله: مروری

نویسندگان

1 استادیار گروه زیست‌شناسی، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران.

2 استادیار گروه زیست‌شناسی، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

3 استادیار گروه زیست فناوری و نانوتکنولوژی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران.

چکیده

مقدمه: ویروس پاپیلومای انسانی (HPV)، یکی از شایع­ترین ویروس­های منتقله از طریق تماس جنسی است. HPV نوع 16 و 18، به عنوان شایع‌ترین HPVهای پر‌خطر، باعث بروز تغییرات بدخیم و سرطان دهانه ­رحم می‌شوند. از آنجا که روش­های تشخیصی رایج معایب زیادی دارند، توسعه روش‌های تشخیصی نوین می‌تواند به‌عنوان یک ابزار مفید با سرعت و کارایی بالا و همچنین ارزان، بسیار نوید‌بخش باشد. زیست‌حسگرهای الکتروشیمیایی به‌عنوان ابزاری جدید مزایایی از جمله طیف تشخیصی وسیع، ارزان بودن و ساده‌تر بودن تجهیزات آزمایشگاهی را دارند. مطالعه مروری حاضر با هدف ارائه یک خلاصه دقیق از پیشرفت‌های زیست حسگرهای الکتروشیمیایی جهت تشخیص HPV 16و 18 انجام شد.
روش‌کار: در این پژوهش، به‌طور سیستماتیک مقالات اصلی زبان انگلیسی و فارسی در پایگاه‌های PubMed، Cochrane Library، Scopus، Science Direct، Google Scholar و دو پایگاه اطلاعاتی ایران شامل SID و IranMedex از سال 2008-2003 با استفاده از کلید واژه‌های Mesh جستجو شدند. در این مطالعه، با استفاده از مقالات منتشر شده در پایگاه‌های علمی، به بررسی نقش زیست‌حسگرهای الکتروشیمیایی در تشخیص زودهنگام HPV نوع 16 و 18 پرداخته شد.
یافته‌ها: در مجموع 11 مطالعه مورد بررسی قرار گرفت. با تجزیه و تحلیل جدیدترین زیست‌حسگرهای الکتروشیمیایی برای شناسایی HPV، مشاهده گردید پلت فرم حسگر ساخته شده توسط وانگ و همکاران با پایین‌ترین حد تشخیص (Atto molar) 1 بود.
نتیجه‌گیری: استفاده از روش‌های مبنی بر زیست‌حسگرهای الکتروشیمیایی با توجه به دارا بودن حساسیت بالا، می‌توانند به‌عنوان یک روش مناسب مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement for rapid diagnosis of cervical cancer (Intra-epithelial) based on Human Papilloma Virus type 16 and 18 using electrochemical biosensor

نویسندگان [English]

  • Pegah Mahmoudi 1
  • Ehsan Karimi 2
  • Majid Rezaei 3
1 Assistant professor, Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
2 Assistant professor, Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
3 Assistant professor, Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
چکیده [English]

Introduction: Human papillomavirus (HPV) is one of the most prevalent sexually transmitted viruses. HPV types 16 and 18, as the most common high-risk HPVs, cause malignant changes and cervical cancer. Since common diagnostic methods have many disadvantages, the development of novel diagnostic methods can be very promising as a useful tool with high speed and efficiency, as well as cost-effective. Electrochemical biosensors as new tools have advantages such as a wide range of diagnostics, low cost and simple laboratory equipment. This review study was performed with aim to present a summary of the development of electrochemical biosensors to diagnose HPV types 16 and 18.
Methods: In this study, English and Persian articles were searched in scientific databases of Pubmed, Cochrane Library, Scopus, Science Direct, Goggle Scholar and two Iranian databases of SID and IranMedex using Mesh keywords from 2003 to 2008. In this study, we investigated the role of electrochemical biosensors in early diagnosis of HPV type 16 and 18 by using the published articles in scientific literature.
Results: A total of 11 articles were studied. By analyzing the newest electrochemical biosensors for diagnosis of HPV, we observed that the sensor platform developed by Wang et al. showed the lowest detection limit (1 Atto molar).
Conclusion: The electrochemical biosensor with high sensitivity can be used as a suitable method.

کلیدواژه‌ها [English]

  • Electrochemical Biosensor
  • Human Papillomavirus Type 16 and 18
  • Intra-epithelial
  1. Vinodhini K, Shanmughapriya S, Das BC, Natarajaseenivasan K. Prevalence and risk factors of HPV infection among women from various provinces of the world. Arch Gynecol Obstet 2012; 285(3):771-7.
  2. Goodman A. HPV testing as a screen for cervical cancer. BMJ 2015; 350:h2372.
  3. Asgarlou Z, Tehrani S, Asghari E, Arzanlou M, Naghavi-Behzad M, Piri R, et al. Cervical cancer prevention knowledge and attitudes among female university students and hospital staff in Iran. Asian Pac J Cancer Prev 2016; 17(11):4921-7.
  4. Shahramian I, Heidari Z, Mahmoudzadeh-Sagheb H, Moradi A, Forghani F. Prevalence of HPV Infection and high risk HPV genotypes (16, 18), among monogamous and polygamous women, in Zabol, Iran. Iran J Public Health 2011; 40(3):113-21.
  5. Bulk S, Berkhof J, Bulkmans NW, Zielinski GD, Rozendaal L, Van Kemenade FJ, et al. Preferential risk of HPV16 for squamous cell carcinoma and of HPV18 for adenocarcinoma of the cervix compared to women with normal cytology in the Netherlands. Br J Cancer 2006; 94(1):171-5.
  6. Chen AA, Gheit T, Franceschi S, Tommasino M, Clifford GM; IARC HPV Variant Study Group. Human Papillomavirus type 18 genetic variation and cervical cancer risk worldwide. J Virol 2015; 89(20):10680-7.
  7. Castellsagué X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol 2008; 110(3 Suppl 2):S4-7.
  8. Harden ME, Munger K. Human papillomavirus molecular biology. Mutat Res Rev Mutat Res 2017; 772:3-12.
  9. Teengam P, Siangproh W, Tuantranont A, Henry CS, Vilaivan T, Chailapakul O. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal Chim Acta 2017; 952:32-40.
  10. Hernandez-Vargas G, Sosa-Hernández JE, Saldarriaga-Hernandez S, Villalba-Rodríguez AM, Parra-Saldivar R, Iqbal H. Electrochemical biosensors: a solution to pollution detection with reference to environmental contaminants. Biosensors (Basel) 2018; 8(2):E29.
  11. Rasouli E, Shahnavaz Z, Basirun WJ, Rezayi M, Avan A, Ghayour-Mobarhan M, et al. Advancements in electrochemical DNA sensor for detection of human papilloma virus-A review. Anal Biochem 2018; 556:136-44.
  12. Saeedfar K, Heng LY, Rezayi M. Fabricating long shelf life potentiometric urea biosensors using modified MWCNTs on screen printed electrodes. Sensor Lett 2017; 15(2):97-103.
  13. Rezayi M, Gholami M, Said NR, Alias Y. A novel polymeric membrane sensor for determining titanium (III) in real samples: Experimental, molecular and regression modeling. Sensors Actuat B Chem 2016; 224:805-13.
  14. Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Karlen DJ, Razavizadeh BB, et al. Dioxin risk assessment: mechanisms of action and possible toxicity in human health. Environ Sci Pollut Res Int 2015; 22(24):19434-50.
  15. Abraham AA, Rezayi M, Manan NS, Narimani L, Rosli AN, Alias Y. A novel potentiometric sensor based on 1, 2-Bis (N’-benzoylthioureido) benzene and reduced graphene oxide for determination of lead (II) cation in raw milk. Electrochim Acta 2015; 165:221-31.
  16. Rahman MA, Reichman SM, De Filippis L, Sany SB, Hasegawa H. Phytoremediation of toxic metals in soils and wetlands: concepts and applications. Environ Remediat Technol Metal Contamin Soils 2016; 8:161-95.
  17. Vassilakos P, Saurel J, Rondez R. Direct-to-vial use of the AutoCyte PREP liquid-based preparation for cervical-vaginal specimens in three European laboratories. Acta Cytol 1999; 43(1):65-8.
  18. Sohrabi A, Rahnamaye Farzami M, Mirab Samiee S, Hossein Modarresi MH. An overview on papillomaviruses as the main cause of cervical cancer. Iran J Obstet Gynecol Infertil 2015; 18(145):14-25. (Persian).
  19. Karnon J, Peters J, Platt J, Chilcott J, McGoogan E, Brewer N. Liquid-based cytology in cervical screening: an updated rapid and systematic review and economic analysis. Health Technol Assess 2004; 8(20):1-78.
  20. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 2010; 16(5):991-1006 .
  21. Bolhassani A, Zahedifard F, Taslimi Y, Taghikhani M, Nahavandian B, Rafati S. Antibody detection against HPV16 E7 & GP96 fragments as biomarkers in cervical cancer patients. Indian J Med Res 2009; 130(5):533-41.
  22. Abreu AL, Souza RP, Gimenes F, Consolaro ME. A review of methods for detect human Papillomavirus infection. Virol J 2012; 9:262.
  23. Ndiaye C, Mena M, Alemany L, Arbyn M, Castellsagué X, Laporte L, et al. HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol 2014; 15(12):1319-31.
  24. Yeom SH, Kang BH, Kim KJ, Kang SW. Nanostructures in biosensor--a review. Frontiers Biosci 2011; 16:997-1023.
  25. Caygill RL, Blair GE, Millner PA. A review on viral biosensors to detect human pathogens. Anal Chim Acta 2010; 681(1-2):8-15.
  26. Higgins IJ, Lowe CR. Introduction to the principles and applications of biosensors. Philos Trans R Soc Lond B Biol Sci 1987; 316(1176):3-11.
  27. Hulanicki A, Glab S, Ingman F. Chemical sensors: definitions and classification. Pure Appl Chem 1991; 63(9):1247-50.
  28. Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 2015; 87(1):230-49.
  29. Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 2014; 32(7):363-71.
  30. Guilbault GG, Pravda M, Kreuzer M, O'Sullivan C. Biosensors-42 years and counting. Anal Lett 2004; 37(8):1481-96.
  31. Verma N, Bhardwaj A. Biosensor technology for pesticides--a review. Appl Biochem Biotechnol 2015; 175(6):3093-119.
  32. Huang H, Bai W, Dong C, Guo R, Liu Z. An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens Bioelectron 2015; 68:442-6.
  33. Frías IA, Avelino KY, Silva RR, Andrade CA, Oliveira MD. Trends in biosensors for HPV: identification and diagnosis. J Sensors 2015; 2015:16.
  34. Tasoglu S, Tekin HC, Inci F, Knowlton S, Wang S, Wang-Johanning F, et al. Advances in nanotechnology and microfluidics for human papillomavirus diagnostics. Proc IEEE 2015; 103(2):161-78.
  35. Vernon SD, Farkas DH, Unger ER, Chan V, Miller DL, Chen YP, et al. Bioelectronic DNA detection of human papillomaviruses using eSensor™: a model system for detection of multiple pathogens. BMC Infect Dis 2003; 3(1):12.
  36. Civit L, Fragoso A, Hölters S, Dürst M, O'Sullivan CK. Electrochemical genosensor array for the simultaneous detection of multiple high-risk human papillomavirus sequences in clinical samples. Anal Chim Acta 2012; 715:93-8.
  37. Wang S, Li L, Jin H, Yang T, Bao W, Huang S, et al. Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles. Biosens Bioelectron 2013; 41:205-10.
  38. Campos-Ferreira DS, Nascimento GA, Souza EV, Souto-Maior MA, Arruda MS, Zanforlin DM, et al. Electrochemical DNA biosensor for human papillomavirus 16 detection in real samples. Anal Chim Acta 2013; 804:258-63.
  39. Souza E, Nascimento G, Santana N, Campos-ferreira D, Bibiano J, Arruda M. Electrochemical DNA biosensor for sequences related to the human papillomavirus type 16 using methylene blue. Biosens J 2014; 3:3-7.
  40. Correr WR. Development of impedimetric DNA sensor for diagnosis of Human Papillomavirus type 18 infection. São Paulo, Brazil: Universidade de São Paulo; 2014.
  41. Jampasa S, Wonsawat W, Rodthongkum N, Siangproh W, Yanatatsaneejit P, Vilaivan T, et al. Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes. Biosens Bioelectron 2014; 54:428-34.
  42. Bartolome JP, Echegoyen L, Fragoso A. Reactive carbon nano-onion modified glassy carbon surfaces as DNA sensors for human papillomavirus oncogene detection with enhanced sensitivity. Anal Chem 2015; 87(13):6744-51.
  43. Karimizefreh A, Mahyari FA, Vaez-Jalali M, Mohammadpour R, Sasanpour P. Impedimetic biosensor for the DNA of the human papilloma virus based on the use of gold nanosheets. Microchim Acta 2017; 184(6):1729-37.
  44. Kowalczyk A, Nowicka AM. Application of mercury-mediated thymine-base pairs for successful voltammetric detection of HPV 18. Sensors Actuat B Chem 2016; 237:810-6.