1. Li, B.N., Dong, M.C. Banking on Blood. IET Computing & Control Engineering, August/September 2006.
2. Ashoori,M., Naji Moghaddam,V., Alizadeh,S., Safi,M.Classification and Clustering Algorithm Application for Prediction of Tablet Numbers: Case Study Diabetes Disease. Health Information Management 1392; 10(5).
3. Rashidmehrabadi,A., Pedram,M. Classification and identification of blood donors tend to donate blood in the future. The Fourth Iran Data Mining Conference, Sharif University of Technology,2010,Tehran.
4. Ashoori, M., Taheri, Z. Using Clustering Methods for Identifying Blood Donors Behavior. 5th Iranian Conference on Electrical and Electronic Engineering (ICEEE), 20-22 August 2013, Gonabad, Iran, PP: 4055-4057.
5. Andrea L. Tranquilli, Beatrice Landi, Stefano R. Giannubilo, Baha M. Sibai. Preeclampsia: No longer solely a pregnancy disease, Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health, (2012), PP: 350–357.
6. Cathrine Staff,N., Circulating predictive biomarkers in preeclampsia, Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health, (2011), PP: 28–42.
7. Nikpour, S. Atarodi Kashani, Z. Mokhtarshahi, Sh. Parsay, S. Nooritajer, M. Haghani, H. Study of the Correlation of the Consumption of Vitamin C-Rich Foods with Preeclampsia and Eclampsia in Women Referred to Shahid Akbar Abadi Hospital in Tehran, Journal of Medical Sciences, 2004,Volume XIV / Issue 54.
8. Tabandeh,A., Argangi , H., Arabi, M . Serum hCG β in women with mild preeclampsia in pregnant women, Journal of Laboratory Medicine, 2013; Volume VII (1): 58-55.
9. Pennings, J.L.A., Kuc, S., Rodenburg, W., Koster, M.P.H., Schielen, P.C.J.I., Vries, A.D. Integrative data mining to identify novel candidate serum biomarkers for pre-eclampsia screening. Prenatal Diagnosis Journal, Vol. 31, No. 12, 2011, PP: 1153-1159.
10. Tabasi Z, Oghbaee N, Samimi M, Sadat Z. Comparison between Effects of Intravenous Labetalol and Hydralazine on Control of Hypertension and Maternal and Neonatal utcomes in Severe Preeclamptic Patients: A Randomized Clinical Trial. Qom Univ Med Sci J 2013;6(4):44-49.
11. Zabihi Mahmoodabadi A, Nobakht AR, Behrashi M, Musavi GH. Furosemide versus hydralazine for managing post partumhy pertension in severe preeclampsia: a comparative study. J Shahid Sadoughi Univ Med Sci 2012; 20(4): 482-88.
12. Modeling techniques in Clementine. Chapter11; Available from:
URL:https://fhss.byu.edu/SPSS%20Modeler/Chapter%2011.pdf.
13. Rule Induction. Chapter12; Available from: URL:
https://fhss.byu.edu/SPSS%20Modeler/Chapter%2012.pdf.
14. Khalilinezad,M., Minaee bidgoli,B. Data mining in medicine. The Third Iran Data Mining Conference,2009.
15. Bhardwaj, A., Sharma, A., and Shrivastava, V. Data Mining Techniques and Their Implementation in Blood Bank Sector –A Review. International Journal of Engineering Research and Applications (IJERA), Vol. 2, No. 4, July-August 2012, PP: 1303-1309.
16. Tan P.N, Steinbach M, Kumar V. Introduction to Data Mining. USA: Addison-Wesley Longman; 2005.
17. Ghazanfari,M., Alizade,S., Teymoorpour,B. Data Mining and Knowledge Discovery,2008,Iran University of Science and Technology.
18. Fiaschi, L., Garibaldi, J.M., Krasnogor, N. A Framework for the Application of Decision Trees to the Analysis of SNPs Data. IEEE conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB'09), 2009, PP: 106-113.
19. Liao S.-H, Chu P.-H, Hsiao P.-Y. Data mining techniques and applications – A decade review from 2000 to 2011. Expert Systems with Applications Journal, Vol. 39, 2012, PP: 11303-11311.
20. Toloie eshlaghy, A., Poor ebrahimi, A., Ebrahimi, M., Ghasem ahmad, L. Using Data Mining Techniques for Prediction Breast Cancer Recurrence. Iranian Journal of Diseases Breast, Vol. 5, No. 4, 2013, PP: 23-34.