Association of KCNJ11 (rs5219) gene polymorphism with susceptibility to gestational diabetes mellitus: a review and meta-analysis

Document Type : Review Article

Authors

1 M.Sc. in Medical physiology, Student Research Committee, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

2 Ph.D. in Medical physiology, Medicinal Plants Research Center, School of Pharmacology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

3 Ph.D. in Medical physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

4 PhD in Epidemiology, Department of Community Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

5 M.Sc. in Genetics, Department of Biology, School of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

6 Ph.D. in Molecular Genetics, Department of Biology, School of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

7 M.Sc. in Medical Genetics, Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran.

8 M.Sc. in Hematology, Student Research Committee, Faculty of paramedicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran.

Abstract

Introduction: Changes in the activity of the gene encoding internal rectifier potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11), due to some polymorphisms of this gene have far-reaching effects on the metabolic processes of people with gestational diabetes mellitus (GDM). This systematic review and meta-analysis were conducted with aim to further evaluate the association between the KCNJ11 (rs5219) polymorphism and GDM
Methods:
In this systematic review and meta-analysis, a literature search was performed to identify the relevant articles in electronic databases such as PubMed, Web of Science, Scopus, Cochrane, EMBASE, and some Persian-language databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the association between KCNJ11 (rs5219) polymorphisms and susceptibility to GDM in four genetic models.
Results: A total of 5578 participants from six articles were included in the meta-analysis. A significant relationship was identified between the KCNJ11 (rs5219) gene polymorphism and GDM in the study population through an additive genetic model (OR = 1.14; 95%CI: 1.00–1.30; P = 0.049) and a recessive genetic model (OR = 0.86; 95% CI: 0.75–0.98; P = 0.033). On the contrary, there was no significant association between the KCNJ11 (rs5219) gene polymorphism and GDM in an allelic genetic model (OR = 1.25; 95%CI: 0.93–1.69; P = 0.136) and the dominant genetic model (OR = 1.15; 95% CI: 0.94–1.41; P = 0.157).
Conclusion: The KCNJ11 gene polymorphism (rs5219) is associated with susceptibility to GDM in women. However, more studies on different ethnicities are required to confirm our results.

Keywords

Main Subjects


  1. Pasand M, Eslamian G, Noura P, Akbarzadeh N, Sadatinejad M. The effects of low carbohydrate diet on the outcomes of gestational diabetes: A systematic review. The Iranian Journal of Obstetrics, Gynecology and Infertility 2023; 26(4):101-17.
  2. Dalfrà MG, Burlina S, Del Vescovo GG, Lapolla A. Genetics and epigenetics: new insight on gestational diabetes mellitus. Frontiers in endocrinology 2020; 11:602477.
  3. Pu J, Zhao B, Wang EJ, Nimbal V, Osmundson S, Kunz L, et al. Racial/ethnic differences in gestational diabetes prevalence and contribution of common risk factors. Paediatric and perinatal epidemiology 2015; 29(5):436-43.
  4. Kim SY, England L, Wilson HG, Bish C, Satten GA, Dietz P. Percentage of gestational diabetes mellitus attributable to overweight and obesity. American journal of public health 2010; 100(6):1047-52.
  5. Saei GN, Ramezani TF. Gestational diabetes and neurodevelopmental disorders in offspring: A systematic review. Iranian Journal of Obstetrics, Gynecology and Infertility 2022; 25(9):126-138.
  6. Lowe WL, Scholtens DM, Lowe LP, Kuang A, Nodzenski M, Talbot O, et al. Association of gestational diabetes with maternal disorders of glucose metabolism and childhood adiposity. Jama 2018; 320(10):1005-16.
  7. Bahreiny SS, Bastani MN, Aghaei M, Dabbagh MR, Mahdizade AH. Circulating Galectin-3 levels in women with polycystic ovary syndrome: A meta-analysis. Taiwanese Journal of Obstetrics and Gynecology 2024; 63(1):37-45.
  8. Ryan EA, Enns L. Role of gestational hormones in the induction of insulin resistance. The Journal of Clinical Endocrinology & Metabolism 1988; 67(2):341-7.
  9. Prudente S, Dallapiccola B, Pellegrini F, Doria A, Trischitta V. Genetic prediction of common diseases. Still no help for the clinical diabetologist!. Nutrition, metabolism and cardiovascular diseases 2012; 22(11):929-36.
  10. Mahdizade AH, Bahreiny SS, Bastani MN, Dabbagh MR, Aghaei M, Ali Malayeri F, et al. The influence of CDKAL1 (rs7754840) gene polymorphism on susceptibility to gestational diabetes mellitus in pregnant women: A systematic review and meta-analysis. International Journal of Diabetes in Developing Countries 2023: 1-10.
  11. Majcher S, Ustianowski P, Malinowski D, Czerewaty M, Tarnowski M, Safranow K, et al. KCNJ11 and KCNQ1 Gene Polymorphisms and Placental Expression in Women with Gestational Diabetes Mellitus. Genes 2022; 13(8):1315.
  12. Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: genetic polymorphisms and risk of diabetes mellitus. Journal of diabetes research 2015; 2015.
  13. Craig TJ, Ashcroft FM, Proks P. How ATP inhibits the open KATP channel. The Journal of general physiology 2008; 132(1):131-44.
  14. Flechtner I, De Lonlay P, Polak M. Diabetes and hypoglycaemia in young children and mutations in the Kir6. 2 subunit of the potassium channel: therapeutic consequences. Diabetes & metabolism 2006; 32(6):569-80.
  15. Bahreiny SS, Ahangarpour A, Saki N, Dabbagh MR, Ebrahimi R, Mahdizade AH, et al. Association of Free Radical Product and Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis. Reproductive Sciences 2024: 1-10.
  16. Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiological reviews 2010; 90(3):799-829.
  17. Stanley CA. Perspective on the genetics and diagnosis of congenital hyperinsulinism disorders. The Journal of Clinical Endocrinology & Metabolism 2016; 101(3):815-26.
  18. Zhang C, Bao W, Rong Y, Yang H, Bowers K, Yeung E, et al. Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Human reproduction update 2013; 19(4):376-90.
  19. Ling C. Epigenetic regulation of insulin action and secretion–role in the pathogenesis of type 2 diabetes. Journal of internal medicine 2020; 288(2):158-67.
  20. Bowman P, McDonald TJ, Knight BA, Flanagan SE, Leveridge M, Spaull SR, et al. Patterns of postmeal insulin secretion in individuals with sulfonylurea-treated KCNJ11 neonatal diabetes show predominance of non-KATP-channel pathways. BMJ Open Diabetes Research and Care 2019; 7(1):e000721.
  21. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj 2021; 372.
  22. Rani PR, Begum J. Screening and diagnosis of gestational diabetes mellitus, where do we stand. Journal of clinical and diagnostic research: JCDR 2016; 10(4):QE01.
  23. Metzger BE, Gabbe SG, Persson B, Lowe LP, Dyer AR, Oats JJ, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy: response to Weinert. Diabetes care 2010; 33(7):e98-.
  24. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology 2010; 25:603-5.
  25. Bahreiny SS, Bastani MN, Dabbagh MR, Ghorbani H, Aghaei M, Zahedian M, et al. Association between ambient particulate matter and semen quality parameters: a systematic review and meta-analysis. Middle East Fertility Society Journal 2024; 29(1):2.
  26. Bahreiny SS, Aghaei M, Dabbagh MR, Ghorbani H, Javidan M, Fard RM. Exploring the relationship between ambient sulfur dioxide and semen quality parameters: A systematic review and meta-analysis. Asian Pacific Journal of Reproduction 2024; 13(1):12-21.
  27. Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). . Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. . Chichester (UK): John Wiley & Sons; 2019.
  28. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj 2003; 327(7414):557-60.
  29. Ades AE, Lu G, Higgins JP. The interpretation of random-effects meta-analysis in decision models. Medical Decision Making 2005; 25(6):646-54.
  30. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj 1997; 315(7109):629-34.
  31. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994: 1088-101.
  32. Popova PV, Klyushina AA, Vasilyeva LB, Tkachuk AS, Vasukova EA, Anopova AD, et al. Association of common genetic risk variants with gestational diabetes mellitus and their role in GDM prediction. Frontiers in endocrinology 2021; 12:628582.
  33. Lenin M, Ramasamy R, Kulkarani S, Ghose S, Srinivasan AR. Association of KCNJ11 (RS5219) gene polymorphism with biochemical markers of glycemic status and insulin resistance in gestational diabetes mellitus. Meta Gene 2018; 16:134-8.
  34. Khan S, Bal H, Khan ID, Paul D. Evaluation of the diabetes in pregnancy study group of India criteria and Carpenter-Coustan criteria in the diagnosis of gestational diabetes mellitus. Turkish journal of obstetrics and gynecology 2018; 15(2):75-9.
  35. Popova PV, Klyushina AA, Vasilyeva LB, Tkachuk AS, Bolotko YA, Gerasimov AS, et al. Effect of gene-lifestyle interaction on gestational diabetes risk. Oncotarget 2017; 8(67):112024-35.
  36. Dedov II, Krasnopol'skiy VI, Sukhikh GT. Russian National Consensus Statement on gestational diabetes: diagnostics, treatment and postnatal care. Diabetes mellitus 2012; 15(4):4-10.
  37. Cho YM, Kim TH, Lim S, Choi SH, Shin HD, Lee HK, et al. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia 2009; 52:253-61.
  38. Metzger BE. Summary and recommendations of the third international workshop-conference on gestational diabetes mellitus. Diabetes 1991; 40(Supplement_2):197-201.
  39. Shaat N, Ekelund M, Lernmark Å, Ivarsson S, Almgren P, Berntorp K, et al. Association of the E23K polymorphism in the KCNJ11 gene with gestational diabetes mellitus. Diabetologia 2005; 48:2544-51.
  40. Lind T, Phillips PR. Influence of pregnancy on the 75-g OGTT: a prospective multicenter study. Diabetes 1991; 40(Supplement_2):8-13.
  41. Li Y, Zhu J, Chen L, Hu W, Wang M, Li S, et al. Genetic predisposition to ischaemic stroke by RAGE and HMGB1 gene variants in Chinese Han population. Oncotarget 2017; 8(59):100150-64.
  42. Ma ZJ, Chen R, Ren HZ, Guo X, Guo J, Chen LM. Association between eNOS 4b/a polymorphism and the risk of diabetic retinopathy in type 2 diabetes mellitus: a meta-analysis. Journal of Diabetes Research 2014; 2014.
  43. Moon JH, Jang HC. Gestational diabetes mellitus: diagnostic approaches and maternal-offspring complications. Diabetes & Metabolism Journal 2022; 46(1):3-14.
  44. Bahreiny SS, Ahangarpour A, Amraei M, Mansouri Z, Pirsadeghi A, Kazemzadeh R, et al. Autoimmune Thyroid Disorders and Polycystic Ovary Syndrome: Tracing Links through Systematic Review and Meta-Analysis. Journal of Reproductive Immunology 2024: 104215.
  45. Shin HD, Park BL, Shin HJ, Kim JY, Park S, Kim B, et al. Association of KCNQ1 polymorphisms with the gestational diabetes mellitus in Korean women. The Journal of Clinical Endocrinology & Metabolism 2010; 95(1):445-9.
  46. Vejrazkova D, Lukasova P, Vankova M, Vcelak J, Bradnova O, Cirmanova V, et al. MTNR1B genetic variability is associated with gestational diabetes in Czech women. International journal of endocrinology 2014; 2014.
  47. Yang L, Zhou X, Luo Y, Sun X, Tang Y, Guo W, et al. Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals. Molecular biology reports 2012; 39:645-59.
  48. Xu S, Jiang Z, Hu N. Association between Genetic Polymorphisms and Risk of Kidney Posttransplant Diabetes Mellitus: A Systematic Review and Meta-Analysis. International Journal of Clinical Practice 2022; 2022.
  49. Phani NM, Guddattu V, Bellampalli R, Seenappa V, Adhikari P, Nagri SK, et al. Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study. PLoS One 2014; 9(9):e107021.
  50. Di Cianni G, Miccoli R, Volpe L, Lencioni C, Del Prato S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes/metabolism research and reviews 2003; 19(4):259-70.
  51. Qiu L, Na R, Xu R, Wang S, Sheng H, Wu W, et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PloS one 2014; 9(4):e93961.
  52. Lapik IA, Ranjit R, Galchenko AV. Impact ofKCNJ11 rs5219, UCP2 rs659366, andMTHFR rs1801133 Polymorphisms on Type 2 Diabetes: A Cross-Sectional Study. Review of Diabetic Studies 2021; 17(1):21-9.
  53. Schwanstecher C, Meyer U, Schwanstecher M. KIR6. 2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic β-cell ATP-sensitive K+ channels. Diabetes 2002; 51(3):875-9.
  54. Van Dam RM, Hoebee B, Seidell JC, Schaap MM, De Bruin TW, Feskens EJ. Common variants in the ATP‐sensitive K+ channel genes KCNJ11 (Kir6. 2) and ABCC8 (SUR1) in relation to glucose intolerance: population‐based studies and meta‐analyses 1. Diabetic Medicine 2005; 22(5):590-8.
  55. Bauer T, Bouman HJ, van Werkum JW, Ford NF, Ten Berg JM, Taubert D. Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. Bmj 2011; 343.
  56. Najafi F, Hasani J, Izadi N, Hashemi-Nazari SS, Namvar Z, Shamsi H, et al. Risk of gestational diabetes mellitus by pre-pregnancy body mass index: A systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2021; 15(4):102181.