مقایسه برخی از عوامل آمادگی جسمانی و فیزیولوژیکی زنان سالمند دیابتی و غیردیابتی دارای اضافه‌وزن

نوع مقاله : اصیل پژوهشی

نویسندگان

1 استادیار گروه علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان، خرم‌آباد، ایران.

2 دانشجوی دکتری فیزیولوژی ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان، خرم‌آباد، ایران.

3 کارشناس ارشد فیزیولوژی ورزشی، دانشگاه پیام نور واحد کرج، کرج، ایران.

4 کارشناس ارشد فیزیولوژی ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان، خرم‌آباد، ایران.

چکیده

مقدمه: دیابت باعث اختلال در هموستاز گلوکز می­شود و آمادگی جسمانی و سلامتی مغزی افراد را کاهش می­دهد. مطالعه حاضر با هدف مقایسه برخی از عوامل آمادگی جسمانی و فیزیولوژیکی زنان سالمند دیابتی و غیردیابتی دارای اضافه­وزن انجام شد.
روش‌کار: این مطالعه توصیفی- تحلیلی در سال 1398 بر روی 34 زن سالمند شهر خرم­آباد انجام شد. یک هفته پیش از انجام آزمون­های آمادگی جسمانی، برای اندازه­گیری سطوح سرمی گلوکز، آیریزین، HbA1c و BDNF، نمونه خونی در حالت ناشتا گرفته شد. 5 روز پیش از انجام پژوهش، آزمودنی­ها با نحوه اجرای آزمون­ها آشنا شدند. سپس در روز اجرای پژوهش، تعدادی از آزمون­های آمادگی جسمانی ویژه سالمندان انجام شد. تحلیل داده‌ها با استفاده از آزمون‌های تی مستقل و ضریب همبستگی پیرسون انجام شد. میزان p کمتر از 05/0 معنی‌دار در نظر گرفته شد.
یافته­ها: در همه متغیرهای آمادگی جسمانی تفاوت معناداری بین دو گروه دیابتی و غیردیابتی وجود نداشت (05/0p>)، اما در همه متغیرهای فیزیولوژیکی تفاوت معناداری مشاهده شد (05/0p<). در گروه غیردیابتی همبستگی منفی و معناداری بین BDNF و HbA1c (0005/0=p و 824/0-=r) و آیریزین و HbA1c (0005/0=p و 734/0-=r) و همبستگی مثبت و معناداری بین BDNF و آیریزین (004/0=p و 608/0=r) وجود داشت، اما در گروه دیابتی همبستگی مثبت و معناداری بین گلوکز و HbA1c (028/0=p و 586/0=r) و آیریزین و BDNF (0005/0=p و 853/0=r) و همبستگی منفی و معناداری بین گلوکز و آیریزین (015/0=p و 636/0-=r)، BDNF و HbA1c (002/0=p و 759/0-=r) و آیریزین و HbA1c (002/0=p و 752/0-=r) وجود داشت.
نتیجه­گیری: به­نظر می­رسد سطح آمادگی جسمانی زنان سالمند غیردیابتی و دیابتی یکسان می­باشد، اما در متغیرهای فیزیولوژیکی گروه غیردیابتی وضعیت بهتری داشتند. همچنین، آیریزین نقش مهم­تری نسبت به BDNF در دیابت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Some physical fitness and physiologic factors in overweight diabetic and nondiabetic elderly women

نویسندگان [English]

  • Vahid Valipour Dehnou 1
  • Azam Darvishi 2
  • Parvaneh Alinezhad 3
  • Hadis Mehrabi Fard 4
1 Assistant Professor, Department of Sport Sciences, School of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
2 Ph.D Student in Exercise Physiology, School of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
3 M.Sc. in Exercise Physiology, Payame Noor University, Karaj Branch, Karaj, Iran.
4 M.Sc. in Exercise Physiology, School of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
چکیده [English]

Introduction: Diabetes interfere the glucose homeostasis and reduces physical fitness and brain health. This study was performed with aim to compare some physical fitness and physiologic factors in overweight diabetic and non-diabetic elderly women.
Methods: This descriptive-analytical study was performed on 34 elderly women in Khorramabad city in 2019. One week before performing physical fitness tests, blood sample was taken in fasting state to measure serum levels of glucose, irisin, HbA1c and BDNF. Five days before doing the study, the subjects were familiarized with the method of performing the tests. Then, on the day of the study, some physical fitness tests special for the elderly were performed. Data were analyzed by Independent t-test and Pearson correlation coefficient test. P< 0.05 was considered statistically significant.
Results: There was no significant difference between the diabetic and non-diabetic groups in all physical fitness variables (p>0.05). However, all physiologic variables showed a significant difference (p<0.05). Also, in the non-diabetic group, there was a significant negative correlation between BDNF and HbA1c (p = 0.0005 and r = -0.824) and irisin and HbA1c (p = 0.0005 and r = -0.734) and a significant positive correlation between BDNF and irisin (p = 0.004 and r = 0.608). But in the diabetic group, there was a significant positive correlation between glucose and HbA1c (p =0.028 and r =0.586) and irisin and BDNF (p = 0.0005 and r = 0.853) and a significant negative correlation between glucose and irisin (P = 0.015 and r = -0.636), BDNF and HbA1c (p = 0.002 and r = -0.759) and irisin and HbA1c (p = 0.002 and r = -0.752).
Conclusion: It seems that the level of physical fitness of overweight non-diabetic and diabetic elderly women is the same. But the non-diabetic group was better in physiological variables. Also, irisin plays more important role than BDNF in diabetes.

کلیدواژه‌ها [English]

  • BDNF
  • Diabetes
  • HbA1c
  • Irisin
  • Women
  • Physical fitness
  1. Mirzaie M, Darabi S. Population aging in Iran and rising health care costs. Iranian Journal of Ageing 2017; 12(2):156-69.
  2. Lima AP, Benedetti TR, Oliveira LZ, Bavaresco SS, Rech CR. Physical activity is associated with knowledge and attitudes to diabetes Type 2 in elderly. Journal of Physical Education 2019; 30.
  3. Cvecka J, Tirpakova V, Sedliak M, Kern H, Mayr W, Hamar D. Physical Activity in Elderly. Eur J Transl Myol 2015; 25(4):249-52.
  4. Nourollahi Z, Valipour Dehnou V, Eslami R. The effect of 8 weeks of circuit training on body weight, blood pressure, serum Cholesterol levels and liver enzymes in elderly women with metabolic syndrome. Iran J Obstet Gynecol Infertil 2019; 22(2):63-72.
  5. Badriazarin Y. Compare the quality of life in elderly athletes and non-athletes in Tabriz. Iranian Journal of Ageing 2013; 8(3):74-82.
  6. Shabani M, Hovanloo F, Ebrahim K, Hedayati M. The Effect of Acute Resistance Exercise on BDNF, IGF-1 and IGFBP-3 in the Elderly. Iranian Journal of Ageing 2014; 9(3):218-26.
  7. Small JA, Gutman G. Recommended and reported use of communication strategies in Alzheimer caregiving. Alzheimer Dis Assoc Disord 2002; 16(4):270-8.
  8. Ziegenhorn AA, Schulte-Herbrüggen O, Danker-Hopfe H, Malbranc M, Hartung HD, Anders D, et al. Serum neurotrophins--a study on the time course and influencing factors in a large old age sample. Neurobiol Aging 2007; 28(9):1436-45.
  9. Lommatzsch M, Quarcoo D, Schulte-Herbrüggen O, Weber H, Virchow JC, Renz H, et al. Neurotrophins in murine viscera: a dynamic pattern from birth to adulthood. International journal of developmental neuroscience 2005; 23(6):495-500.
  10. Matthews VB, Aström MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 2009; 52(7):1409-18.
  11. Yamanaka M, Tsuchida A, Nakagawa T, Nonomura T, Ono-Kishino M, Sugaru E, et al. Brain-derived neurotrophic factor enhances glucose utilization in peripheral tissues of diabetic mice. Diabetes Obes Metab 2007; 9(1):59-64.
  12. Pedersen BK, Pedersen M, Krabbe KS, Bruunsgaard H, Matthews VB, Febbraio MA. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp Physiol 2009; 94(12):1153-60.
  13. Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 2007; 50(2):431-8.
  14. Sharifi GR, Bani Hashemi Emam Gheysi M, Rahnama N, Babai Mazrae No AR. Comparison of the Effect of 8 Weeks Aerobic Exercise With Resistance Exercise on Brain-Derived Neurotrophic Factor in Elderly Men. Iranian Journal of Ageing 2015; 10(3):148-55.
  15. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002; 25(6):295-301.
  16. Reisi J, Rajabi H, Ghaedi K, Marandi SM, Dehkhoda MR. Effect of Acute Resistance Training on Plasma Irisin Protein Level and Expression of Muscle FNDC5 and Adipose Tissue UCP1 Genes in Male Rats. Journal of Isfahan Medical School 2013; 31(256):1657-66.
  17. Seo DY, Kwak HB, Lee SR, Cho YS, Song IS, Kim N, et al. Effects of aged garlic extract and endurance exercise on skeletal muscle FNDC-5 and circulating irisin in high-fat-diet rat models. Nutr Res Pract 2014; 8(2):177-82.
  18. Phillips C, Baktir MA, Srivatsan M, Salehi A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci 2014; 8:170.
  19. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 2013; 18(5):649-59.
  20. Jodeiri Farshbaf M, Ghaedi K, Megraw TL, Curtiss J, Shirani Faradonbeh M, Vaziri P, et al. Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders? Neuromolecular Med 2016; 18(1):1-15.
  21. Woo YC, Cheung BM, Yeung CY, Lee CH, Hui EY, Fong CH, et al. Cardiometabolic risk profile of participants with prediabetes diagnosed by HbA1c criteria in an urban Hong Kong Chinese population over 40 years of age. Diabet Med 2015; 32(9):1207-11.
  22. Akhlaghi F, Rajabian R, Talebi F. Correlation of HbA1c and Outcome of Pregnancy in Insulin Dependent Diabetic Women. Iran J Obstet Gynecol Infertil 2012; 15(9):1-6.
  23. Singh G, Kumar A. Relationship among HbA1c and lipid profile in Punajbi type 2 diabetic population. Journal of Exercise Science and Physiotherapy 2011; 7(2):99.
  24. Amaro Gahete FJ, De-la A, Jurado-Fasoli L, Castillo MJ, Gutiérrez Sáinz Á. Fitness assessment as an anti-aging marker: a narrative review. J Gerontol Geriatr Res 2017; 6: 1-7.
  25. Myers J, Herbert WG, Humphrey RH, editors. ACSM's resources for clinical exercise physiology: musculoskeletal, neuromuscular, neoplastic, immunologic, and hematologic conditions. Lippincott Williams & Wilkins; 2002.
  26. Valipour Dehnou V, Motamedi R. assessing and comparing of balance and flexibility among elderly men and women in the age group of 60-79 years. Iranian Journal of Ageing 2018; 13(2):210-21.
  27. Sakuma K, Yamaguchi A. The recent understanding of the neurotrophin's role in skeletal muscle adaptation. J Biomed Biotechnol 2011; 2011:201696.
  28. Furukawa K, Fuse I, Iwakura Y, Sotoyama H, Hanyu O, Nawa H, et al. Advanced glycation end products induce brain-derived neurotrophic factor release from human platelets through the Src-family kinase activation. Cardiovascular diabetology 2017; 16(1):1-9.
  29. Meeusen R. Exercise, nutrition and the brain. Sports Med 2014; 44 Suppl 1(Suppl 1):S47-56.
  30. Bacchi E, Negri C, Zanolin ME, Milanese C, Faccioli N, Trombetta M, et al. Metabolic effects of aerobic training and resistance training in type 2 diabetic subjects: a randomized controlled trial (the RAED2 study). Diabetes Care 2012; 35(4):676-82.
  31. Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res 2015; 60:56-64.
  32. Loprinzi PD, Frith E. A brief primer on the mediational role of BDNF in the exercise-memory link. Clin Physiol Funct Imaging 2019; 39(1):9-14.
  33. Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 2004; 20(10):2580-90.
  34. Vaynman S, Ying Z, Gómez-Pinilla F. Exercise induces BDNF and synapsin I to specific hippocampal subfields. J Neurosci Res 2004; 76(3):356-62.
  35. Li X, Wu Q, Xie C, Wang C, Wang Q, Dong C, et al. Blocking of BDNF-TrkB signaling inhibits the promotion effect of neurological function recovery after treadmill training in rats with spinal cord injury. Spinal Cord 2019; 57(1):65-74.
  36. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 2009; 94(10):1062-9.
  37. Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 2010; 298(2):R372-7.
  38. Martinus R, Corban R, Wackerhage H, Atkins S, Singh J. Effect of psychological intervention on exercise adherence in type 2 diabetic subjects. Ann N Y Acad Sci 2006; 1084:350-60.
  39. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481(7382):463-8.
  40. Pedersen BK. Physical activity and muscle–brain crosstalk. Nature Reviews Endocrinology 2019; 15(7):383.
  41. Wrann CD. FNDC5/irisin - their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain Plast 2015; 1(1):55-61.
  42. Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nat Med 2019; 25(1):165-175.
  43. O'Gorman DJ, Karlsson HK, McQuaid S, Yousif O, Rahman Y, Gasparro D, et al. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 2006; 49(12):2983-92.
  44. Alijani E. The role of exercise in control and prevention of diabetic disease. Olympic 2009; 19(1):2.
  45. Shavandi N, Shahrjerdi S, Hoseini RS, Ghorbani A. The effect of strengthening exercises on metabolic factors, quality of life and mental health in women with type 2 diabetes. Iranian Journal of Endocrinology and Metabolism 2010; 12(3):222-310.
  46. Rahimi N, Marandi SM, Kargarfard M. The Effects of Eight-week Aquatic Training on Selected Physiological Factors and Blood Sugar in Patients with Type II Diabetes. Journal of Isfahan Medical School. 2011 Aug 8;29(142):722-32.
  47. Shenoy S, Arora E, Jaspal S. Effects of progressive resistance training and aerobic exercise on type 2 diabetics in Indian population. Int J Diabetes Metab 2009; 17(1):27-30.
  48. Teixeira-Lemos E, Nunes S, Teixeira F, Reis F. Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol 2011; 10:12.
  49. Wang Y, Simar D, Fiatarone Singh MA. Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance: a systematic review. Diabetes Metab Res Rev 2009; 25(1):13-40.
  50. Misra A, Alappan NK, Vikram NK, Goel K, Gupta N, Mittal K, et al. Effect of supervised progressive resistance-exercise training protocol on insulin sensitivity, glycemia, lipids, and body composition in Asian Indians with type 2 diabetes. Diabetes Care 2008; 31(7):1282-7.
  51. Strasser B, Siebert U, Schobersberger W. Resistance training in the treatment of the metabolic syndrome: a systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sports Med 2010; 40(5):397-415.
  52. Cauza E, Hanusch-Enserer U, Strasser B, Ludvik B, Metz-Schimmerl S, Pacini G, et al. The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil 2005; 86(8):1527-33.
  53. Powers SK, Howley ET, Quindry J. Exercise physiology: Theory and application to fitness and performance. 10nd ed. New York, NY: McGraw-Hill; 2018.